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Abstract—The scattering of X-rays and y-rays are events that have strong dependencies on the
polarization of the incident and scattered photons. Because of this, scattering problems that can be solved
without explicit reference to the state of polarization of the incident and scattered radiation are
exceptional. This article reviews available information on polarization effects arising when photons in the
X-ray and y-ray regime undergo photoelectric effect, coherent (Rayleigh) scattering and incoherent
(Compton) scattering by atomic electrons. In addition to descriptions and discussion of these effects, we
study the backscattering of y-rays from an infinite thickness target excited with a plane slant monodirec-
tional and monochromatic source, using the Boltzmann transport theory and the mathematical represen-
tation of polarization introduced by Stokes. Results from this model, for both unpolarized and polarized
y-ray sources, are compared with computations performed neglecting or averaging polarization effects,

showing the limitations of such approximations.

1. INTRODUCTION

X- and y-ray photons interact with matter producing
secondary radiation that carries useful information
about the atoms comprising the target. Since X-rays
are penetrating, it is very probable that their sec-
ondary radiation may suffer successive interactions
with other atoms before leaving the specimen. This
fact leads to the definition of a “thin” sample as
having a thickness thin enough that we witness no
more than one interaction. Because of this a multiple
scattering scheme seems to be necessary to study in
detail the backscattering of X-rays in a dense
material excited with a monochromatic and mono-
directional source. In a recent work, Fernandez and
Molinari (1991) showed that multiple scattering con-
tributions due to the three prevailing processes in the
X-ray regime (the photoelectric, the Rayleigh and the
Compton effects) can appreciably modify the more
intense first-order intensities by contributing a back-
ground or “multiple scattering spectrum”. This back-
ground is formed by the overlapping of many single
contributions—i.e. the possible combinations of the
three types of processes for each number of collisions.
Individually, each process can be more or less prob-
able depending on the energy and the geometry
involved in the scatterings. However, when they are
combined they become a consistent contribution. Our
knowledge on the whole background spectrum has
been built, as a mosaic, by studying the contributions
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from certain sequences of collisions, or chains: the
continuous background due to multiple Rayleigh
and Compton scattering events (having the classic
differential cross-sections depending on averaged
polarization states) overlapping the Compton peak
(Fernandez, 1991; Fernandez and Sumini, 1992);
Compton and Rayleigh scattering contributions to
the characteristic photo-peaks (Fernandez et al.,
1990; Fernandez, 1992; Fernindez and Molinari,
1992), and higher-order purely photoelectric inter-
actions (Fernandez, 1989; Fernandez and Molinari,
1990). The addition of all the contributions of up to
two (and selected ones of up to three) orders-of-scat-
tering obtained with an analytical solution to the
Boltzmann transport equation for photons, allowed
the build-up of theoretical X-ray spectra matching
well experimental data (Fernindez and Sumini,
1991). These results confirmed the validity of this
approach to get refined solutions in X-ray spec-
trometry. However, the mentioned equations of
transport do not include, rigorously, the state of
polarization in the description of the radiation field,
although an average polarization state is present in
the Rayleigh and Compton kernels.

In Roentgen’s 1895 “discovery” paper (Roentgen,
1895) he conjectured that his newly-revealed radi-
ation (now called “X-rays”) might be ultraviolet
light, in which case it should meet a list of four
criteria including: “It cannot be polarized by any
ordinary polarizing media.” However, in the years
following, several attempts were made to find polar-
ization effects in X-rays, as the notions of electromag-
netic radiation were still in the early stages of
development, with the “ether” still a popular medium
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for its propagation. In 1905, Barkla’s scattering
measurements (Barkla, 1905) indicated a weak polar-
ization of the primary X-ray beam, and in 1906
Barkla (1906) added a second carbon-block scatterer
to his experimental arrangement. The tertiary scat-
tered beam indeed exhibited large azimuthal vari-
ations in intensity when recorded in a detector
rotated about the second carbon-block scatterer in a
plane perpendicular to the direction of the secondary
(first-scattered) X-ray beam. This confirmed the
plane-polarization of the scattered X-ray beam, and
hence the kinship of X-rays to visible and to ultra-
violet light, despite Roentgen’s above criterion in his
conjecture.

Barkla’s (1906) results were quickly confirmed by
Haga (1907) and others. These were followed by
similar-geometry measurements reported in 1924 by
Compton and Hagenow (1924) whose observations
included not only 100% polarization in the 90°
first-scattered beam, but also a modified (lowered
energy) scattered component. This energy modifi-
cation is a major characteristic of the photon inter-
action process soon to become well-known as
“Compton scattering”. Further measurements ex-
tended the range of primary photon energies into the
“hard X-ray” region, including the 1936 work of
Rodgers (1936) who studied the polarization of
80-800 kV primary X rays Compton scattered into
90°.

With the exception of two papers by Spencer and
co-workers (Spencer, 1948; Spencer and Wolff, 1953)
and the seminal work by Fano et al. (1959), radiation
transport calculations including the effects of polariz-
ation on radiation scattering processes appear to be
non-existent until two recent papers by Fernindez
and co-workers (Fernandez and Molinari, 1993;
Fernandez, 1993a). Also polarization effects on the
differential (in angle) scattering cross sections have
been recently studied by Hanson and co-workers
(Hanson, 1986a, b,c, 1988a,b, 1990; Hanson and
Meron, 1988) for synchrotron light applications.
However, in other recent transport calculations,
mostly using the Monte Carlo technique, these polar-
ization effects have been universally ignored. Hence it
is of interest to investigate or find reference to the
magnitude of the error introduced into present trans-
port calculations resulting from the omission of
polarization effects, and to determine if it would be
worth-while to try to include such effects in future
calculations.

The accounting for polarization effects presents
many interesting points that need elucidation. Four
parameters are necessary to fully describe the state of
polarization, of a beam of X-rays (Stokes, 1852;
Chandrasekhar, 1950; McMaster, 1954, 1961; Fano
et al., 1959; Pomraning, 1973). Further, the state of
polarization, and hence these parameters, changes
every time the photon undergoes a scattering event.
Accordingly, a proper description of photon trans-
port including polarization effects involves four
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coupled equations of transfer. The well-known
equation of transport can be considered as the result
of approximating this set of four equations over all
final polarization states, assuming the incident X-rays
are unpolarized. This approximation, however, intro-
duces an error that can be corrected by formulating
the radiative transfer equations with proper account
of the state of polarization. The events mentioned
above can exhibit significant differences in their inter-
action probabilities depending on the polarization of
the incident photons. In contrast, the photoelectric
effect has much lower sensitivity. These different
behaviours have suggested that the continuous back-
ground intensity (due to the Compton and Rayleigh
scattering) in an X-ray spectrum could be reduced by
using a source of appropriately polarized photons,
and/or choosing appropriate (collimated) directions
for excitation and detection. Spectral background
reduction resulting from the use of polarized photons
has led to techniques of adding polarizers to the beam
(Christoffersson and Mattson, 1983; Wobrauschek
and Aiginger, 1983; Wielopolski et al., 1989) or using
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Fig. 1. (a) Irradiation scheme of an homogeneous specimen

of infinite thickness excited with a collimated monochro-

matic X-ray source. (b) The magnitudes represented in the
photon transport equation (10).
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Table 1. Notations used by Chandrasekhar (1950); Spencer and
Wolff (1953), Fano et al. (1959) and McMaster (1961); and this work
for Stokes intensities

Chandrasekhar Spencer This work
I I, I,
o I I,
U I, Iy
1 4 I, I,

We prefer to denote the intensity with capital I as usual, with the
explicit mention of the Stokes components with subscripts. This
allows us to modify easily the notation for representing the
intensity in others reference systems as, for instance, I and I,
in the (L) system.

X-rays from electron synchrotron storage rings
(Sparks et al., 1977, 1978; Hanson et al., 1983, 1987;
Iida et al., 1985; Jacklevic et al., 1985; Knochel et al.,
1985; Prins et al., 1985).

In this article we shall discuss the influence of the
various parameters defining the polarization state,
with recourse to some recent results already men-
tioned, which lead to detailed descriptions of the
multiple-scattering contributions from different inter-
actions (such as the photoelectric effect, and Comp-
ton and Rayleigh scattering by atomic electrons). We
shall discuss the four-component Stokes vector ap-
proach which represents the polarized intensity of a
low energy y-ray spectrum. We shall emphasize a
transport model for an infinite thickness target
excited with a plane source of highly collimated,
monochromatic radiation having an arbitrary state of
polarization [see Fig. 1(a)] for which extensive calcu-
lations are available (Fernandez and Sumini, 1991;
Fernandez, 1993a). With recourse to a recursive
solution (Fernandez and Molinari, 1993) to the re-
sulting set of equations, valid with all the interactions
of interest, we shall study the effect of polarization on
single chains of collisions capable of contributing
separately to the X-ray background. The results for
unpolarized y-ray sources will be compared with the
analogous intensity terms calculated with those in the
unpublished paper by Spencer (1948) and with the
scalar equation. The scalar equation averages polariz-
ation effects which introduces limitations in the ap-
proximations. The results for polarized y-ray sources
will be compared with the studies on scattering
cross sections by Hanson and co-workers (Hanson,
1986a, b,c, 1988a,b, 1990; Hanson and Meron,
1988).

2. THE REPRESENTATION OF POLARIZED RADIATION
(THE STOKES PARAMETERS)

The polarization of y-rays, a net wave effect, needs
four parameters to be represented. The intensity of
the beam clearly constitutes one parameter. It is the
only parameter taken into account in scalar represen-
tations of radiation transport, the “usual” modeling
in Monte Carlo simulations (Cashwell and Everett,
1959; Carter and Cashwell, 1975). In addition, at each
space point and for a given wavelength and direction
of propagation, the most general beam of y-rays can

be regarded as a mixture of an elliptically polarized
fraction and a fraction of unpolarized y-rays. The
fraction of the photons that are polarized (the degree
of polarization) constitutes the second parameter.
The remaining two parameters are necessary to de-
scribe the ellipse associated with the elliptically polar-
ized component. One of these parameters specifies the
orientation of the ellipse, i.e. the angle between the
major (or minor) axis of the ellipse and a fixed
coordinate axis in the space. This is generally referred
to as a specification of the orientation of the ellipse
of polarization. The final parameter is the ellipticity
of the ellipse, i.c. the ratio of the two axes of the
ellipse. Because of the diverse nature of these four
quantities, it is convenient to use an equivalent set of
quantities, introduced by Sir George Stokes (1852),
which contains all the physical information about the
polarization state of the y-ray beam. In this way,
radiative transfer can be described using four-
component parametrization obeying a vector trans-
port equation (e.g. Chandrasekhar, 1950; Spencer
and Wolff, 1953; Fano et al., 1959; Pomraning, 1973).

In summary, a polarized photon beam of y-rays
needs four parameters I, I, I and I,—the Stokes
parameters (or set S) each having the dimension of
an intensity—to specify the intensity, the degree of
polarization, the orientation of the ellipse of polariz-
ation and the ellipticity at each point of the space and
in any given direction (see Table 1 for an equivalence
with other notations). Actually, a more convenient
set of parameters I, I,, I and I, can be used. This
set, named L, is related to the former through the
relationships:

L=I+1, (1a)
IQ=I||_IJ., (lb)
Iy, 1. (1o

Photons possess electric field vectors & (perpendicu-
lar to the propagation vectors) directions define the
plane of polarization. If a beam of photons is polar-
ized, there is a net alignment of the & vectors. The
plane that is made of the propagation vector and this
net of the & vectors is sometimes called erroneously
the plane of polarization. The plane defined by the
propagation directions £ of the photon beam before
and after the collision is known as scattering plane.
I, is the fraction of photons whose projections of &
vectors are in the plane of scattering. I, is the fraction
of photons whose projections are perpendicular to
this plane. Since the electric vector associated with the
beam of y-ray lies in a plane perpendicular to k,itcan
be resolved in such directions:

E=¢(68,+6,6,, (1d)
k=¢xé, (le)
16.F=1,, (1)
L = L. (1g)
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Following Pomraning (1973) we can express the set
S—intensities with subindices (I, Q, U, ¥)—in terms
of the angles y (rotation of the major axis of the
polarization ellipse about ¢;) and # (related to the
major-to-minor axes ratio or ellipticity). The mean-
ings of these parameters become apparent from the
relationships:

I, =1,cos 2f cos 2y, (2a)
I, =1,cos 28 sin 2y, (2b)
I,=1;sin 2. (20)
For elliptically polarized y-rays we note that
I
sin2 =2, (3a)
I
Iy
tan2y =2, (3b)
I
and the Stokes parameters verify the relation
E=L+I}+L. 3o)
Consequently, only three of these four parameters are

independent.
Table 2 shows some common states of polarization
represented using both sets of parameters, S and L.
For partially polarized y-rays (i.e. a mixture of
unpolarized and elliptically polarized y-rays), the
four parameters are necessary and the following
relation holds
B2+ + 1. ()]

It is clear that the total intensity I, and the ad-
ditional parameters I,, I, and I,,, completely deter-
mine, from an experimental point of view, the
characteristics of an arbitrary beam. That is, two
beams with the same Stokes parameters, are optically
equivalent since experimentally they cannot be distin-
guished.

From these relations Chandrasekhar (1950) has
shown that an unmpolarized beam of y-rays can be
expressed as a mixture of two independent elliptically
polarized beams of equal intensity, having similar
ellipses of polarization with their major axes perpen-
dicular to each other (y; — x, = +=/2), and sense of
polarization of one beam contrary to that of the other
(B, = —B,). These two beams are said to be oppo-
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sitely polarized. It should be emphasized that, besides
the relationship with y, and B,, x, and B, are arbi-
trary. Hence an unpolarized y-ray beam is equivalent
to a mixture of two independent oppositely polarized
beams of equal intensity.

In a similar way, a general beam of y-rays can be
represented by two independent elliptically polarized
beams with intensities and states of polarization given
by

L=30—-G+E+5), (=B xt=n/2); (5a)

L=3L+0+5%+8)", B 1) (5b)
where B and yx are given by the relationships
. I,
2 =
B L ¢
I
tan 2y = I—” . (5d)

Q

It is customary to define the degree of polarization P
as the fraction of polarized (scattered) radiation after
the collision, which in terms of the Stokes intensities
is given by the dimensionless ratio

_(G+H+5)"
I, '

For the case of plane polarized photons # =0°so I,
the ellipticity, is zero. The unpolarized photons can
actually be thought of as being a subset of the
polarized photons and have the criteria I; =1, =3I,.
This fact can be used to simplify calculations in
certain cases.

P (5¢)

3. THE TRANSPORT EQUATION FOR POLARIZED
PHOTONS

The flow of y-rays is completely determined as
the solution of a transport equation describing the
balance between the number of photons of given
energy and direction entering and leaving an
infinitesimal volume element. This balance may be
formulated for conditions where the y-ray source
is constant in time (steady-state problem) and,
therefore, also the photon flow in the medium.
In what follows we shall, firstly, build up the scalar
integro-differential Boltzmann transport equation for

Table 2. Some characteristic states of polarization are shown using both sets of
parameters, S and L, normalized to an unitary total intensity

Set S Set L
Polarization &, UV) L1, 0,v)
Unpolarized (1,0,0,0) G:30,0)
Linear (1, cos 2y, sin 2y, 0) %(l + cos 2y, 1 —cos 2y, 2sin 2, 0)
(generic)
Linear (||) (1,1,0,0) ©,1,0,0)
(parallel)
Linear (1) (1, -1,0,0) (1,0,0,0)
(perpendicular)
Linear (45°) (1,0,1,0) (%, ; 1,0
Circular (1,0,0,1) 22 0,1)

x denotes the orientation of the line of polarization about the intersection of the
polarization plane with the scattering plane.
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photons in an infinite medium; secondly, adapt the
scalar equation to the simple set-up model of
backscattering from an infinite target; and thirdly,
convert this scalar equation into a four-vector
equation maintaining all of the information about the
polarization state of the interacting radiation.

3.1. The scalar photon transport equation for an
infinite medium

Let us consider a point r and an infinitesimal right
cylinder with a base area d4 centered at r and with
a height d/, whose lateral surface is parallel to a
direction w. We define the flux f(r, ®, 1) dA dw as the
number of photons with wavelengths between A and
A + dA4, and with directions between @ and o + do,
which cross a unit area of the base of the infinitesimal
cylinder per unit time.

We shall use the wavelength A in place of the energy
E because it is more convenient to describe the
above interactions, although the use of E is entirely
equivalent, E = hc/A. This choice will also allow us to
maintain close compatibility with previous results.
We should not forget that crystallographic and spec-
troscopic techniques evolved much earlier in the
wavelength domain than in the energy domain.
It is always possible to convert the results from the
wavelength to the energy domain with an appropriate
transformation.

The net number of photons with specified direction
and energy leaving the infinitesimal cylinder per unit
time is represented by the quantity

fr+od,0,i)d4d —f(r, 0, 1)d4, 6)

which can be expressed in differential form
o Vf(r,o,A)dA4 d¢. @)

Three factors contribute to this net outflow:

(i) The narrow-beam linear attenuation in the
whole volume of the cylinder, which amounts
to —u(4)dsf(r, »,1)dA4: Narrow-beam at-
tenuation is ruled by the known one-dimen-
sional Beer-Lambert attenuation law. u(4) is
the specimen’s total mass attenuation co-
efficient, and is strongly wavelength (energy)-
dependent, but it is independent of geometry,
because measurements of narrow-beam at-
tenuation coefficients are performed with the
classic experiment of intensity attenuation by
thin absorber foils. u(A) is considered to be
“linear” since it is assumed that each inter-
action removes the photon from the beam.

(i) The scattering of photons with direction @’
and wavelength A’ into  and A: If the scatter-
ing happens anywhere within the cylinder
volume dA4 d/, it contributes a positive
outflow from the cylinder. This term depends
on the flow f(r, w, ) times the probability
density function £(w, 4, ®’, 2’) of photon scat-
tering into w and A from @’ and A’ (per unit
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path through the medium and per unit dw and
dA). The product must be integrated over all
incident directions @’ and wavelengths 1’ to
give the whole scattering contribution.

The word ‘“scattering” denotes some
generic process capable of transmuting a
photon of some energy and direction into
another photon with different (or equal)
energy and direction, and does not strictly
mean a scattering process. In this sense, the
radiative photoeffect responsible of XRF
emission may be considered a scattering
process.

(iii) The source, if any, introduces photons with a
given energy and direction within the cylinder.

If the photons are produced with a source
density &(r, ®, 1), per unit volume, per unit
time, per steradian and per unit 4, the corre-
sponding excess flow out of the cylinder will
be d4 d/F(r, w, A), per unit time, per stera-
dian and per unit 4.

Equating the difference (7) to the sum of the
above three factors and factoring out the arbitrary
cylindrical volume dA d¢, we obtain the scalar
transport equation for photons in an homogeneous
medium

o Vfr,o, i)
= —u(A)f(r, o, }~)+J‘Go di’ f do’
0 4n

x £(@, 1 ', ANf(r, 0", 1) + L, 0,2).  (8)

Although equation (8) is quite general, it
corresponds to an infinite geometry. In general,
the functions u, £ and & will depend on the
medium composition, the interactions, the geometry
of interest, and the excitation source. The integro—
differential equation (8) is an extremely difficult
equation to solve. Analytical solutions usually
require a high degree of approximation. Even then
there are only a few specific sets of u, £ and &
that allow us to analytically solve equation (8).
Therefore for most real experimental conditions,
numerical methods are used to describe the
system.

3.2. Set-up model: backscattering from an infinite
thickness target of homogeneous composition

We shall adapt equation (8) to represent the scat-
tering of a monochromatic and collimated y-ray
beam in a thick homogeneous target. Following Fano
et al. (1959), the transport equation for an incident
beam of parallel rays with flight direction @, hitting
the infinite sample surface, reduces to a one-dimen-
sional spatial equation. The monochromatic beam of
wavelength 4, is represented by a Dirac d-function
8(A — 4,) and the collimation in the direction @, by
8(w — ). Since a plane through the point ry and
perpendicular to u (a unit vector) has the equation
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u-r=u-ry, a source of I, uniformly distributed
photons cm~2s~! on this plane is represented by the
function I, 6(u - r — u - ry). Then, the complete source
term can be written as

F(r,o,A)=Ld@ r—u-ry)d(® —wy) (4 — 4y).
e)]

The flux calculation is easier when the medium is
infinite and homogeneous, that is, when the co-
efficients y and £ take the same values through all the
space. Under this assumption, if the source function
depends spatially on the component of r along 22 (2
being some arbitrary direction), the flux distribution
has the same plane of symmetry, i.e. it depends on the
single space coordinate r -£2. Therefore, we can
eliminate two spatial variables in the transport
equation (8) by choosing the point r, as the origin of
coordinates and the direction u as the z-axis. In this
way the spatial flux distribution will depend only on
z and o - Vf will reduce to w,(df/0z).

The transport equation can also be adapted, pre-
serving the above conditions, to describe the diffusion
in a semi-infinite medium. To this end, we assume the
source is just placed along the plane interface between
two infinite semi-spaces: an infinite empty region over
the infinite target. A sketch of the geometrical ar-
rangement is shown in Fig. 1 (a and b).

So far, as we are concerned with photons interact-
ing in the target (positive z), we can assume that the
photons escaping towards the upper side may suffer
absorption but cannot be backscattered into the
target. This model (Fernandez et al., 1989) represents
the behaviour of radiation in two semi-infinite media
of different density (the density in the sample being
much greater than the density in the surrounding
empty space or air).

Such a model can be well represented replacing the
kernel £(w, 4, ®’, 1) by a new one including explicitly
this spatial dependence. The new kernel should take
the value zero for negative z (because photons in the
upper semi-space have zero probability of being
scattered) while it should match the old kernel in the
lower semi-space. Consequently, the empty semi-
space is figured in the equation through its non-
restitution property, rather than by a change in the
density or in the absorption coefficient. This choice
preserves the mathematical shape of equation (8)
while ensuring a uniform u(4).

3.3. The scalar transport equation for the model
The scalar Boltzmann equation for the model is

f(z,w, 4
L YY)
+Jw dl’j do'f(@, A, 0, AYUCZ)f (2,0, A)

0 4n

+16(2)6(w — @) 6(4 — 4o), (10)

+“L” and “S” are sets of parameters as shown in Table 2.

J. E. FERNANDEZ et al.

X

Fig. 2. Transformation between the plane of scattering and
the meridian plane. © denotes the scattering angle.

where n denotes the directional cosine w,,do’ =
dn’ de’ the differential of solid angle in the direction
of the unitary vector @’ and %(z) the unitary step
Heaviside function. It should be noted that, although
the transport equation (10) is one-dimensional in the
space coordinates, the flux maintains all the angular
information through its dependence on w.

Thus far our discussion of the equation of transfer
has not included rigorously the state of polarization
in the description of the radiation field. However,
polarization can be taken into account in the scalar
kernels by defining the possible interactions between
photons and matter. For instance, it is current
practice to consider scattering kernels depending on
an average state of polarization. This choice is valid
for one single scattering of unpolarized incident
radiation and/or polarization insensitive detector, but
introduces an error as we shall show in the next
sections.

3.4. The vector transport equation for the model

The transport equation for the fourth-vector de-
scribing the albedo flux f®(r, w, A)t of polarized
photons scattered from an infinite thickness target
irradiated with a plane source at z =0 [components
fOr, 0,4), fPr,0,4), fPr,0,4) and f P(r, 0, 1)
in the meridian plane] can be written (see e.g.
Fernandez and Molinari, 1993), similarly to equation
(10), as

1oef e 0, 1) = —u(0) SO, @, 1)
+0(z)w, 1) +U(2) '[w di’
0

x j do’'HP(w, 4, @', A) fP(z,0’,A"). (11a)
4n
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Here
H®(w, 4, ®’, A") = LP(x — P)
x K&, A, 0", A)LP(=¥P), (11b)

is the kernel matrix in the meridian plane of reference;
K®(w, 4, ®’, A’) the scattering matrix in the scatter-
ing plane of reference; and L the four-by-four
rotation matrix which transforms the description of
the scattered flux from the scattering plane to the
meridian plane or reference; u(4) is the narrow-beam
attenuation coefficient independent of the state of
polarization of the photon (assuming the matter is
isotropic) and ¥P(w, A) is the source vector flux
[with components &,, ¥, ¥, and ¥,]. The
rotation angles ¥ and ¥’ in equation (11b), shown
in Fig. 2, are defined by the relationships

n'/1—n*=n/1—n"cos(p — ¢’

cosY = =0 o))" , (1l¢)
and

1_ 122 __ 1_ 2 — ”
cos @' = nc—n 1" cos(e (p)_ (11d)

- )"

For a rotation of the axes through an angle ¢ in the
clockwise direction, the matrix LY is defined as (e.g.
Chandrasekhar, 1950; Pomraning, 1973)

cos’p sin’¢p isin2¢ 0
sin? cos? —1sin2¢ 0
W)= | oo TP TR g
—sin2¢ sin2¢ cos2p O
0 0 0 1

A transport equation for the Stokes components of
the flux, similar to equation (11a), can be obtained by
substituting L by S in equations (11a) and (11b), and
using the rotation matrix L® defined as

1 0 0 0
0 cos2 sin2¢ 0
L9p) = R F(E)
0 —sin2¢p cos2¢ 0
0 0 0 1
together with a consistent matrix kernel
Ko, 4, ’, A") and vector source ¥ (w, 1) in the
system S.

From a mathematical point of view, the only
apparent difference between equation (11a) and the
corresponding scalar transport equation for average
polarized radiation [see equation (10)] is the vectorial
character of equation (11a). Equation (1la) rep-
resents a system of four integro-differential equations

1210, @, 4
0z
= _”(A )st)(Z, , l) + 6(2)??”((9, j')
+ ‘?I(z)f dA’J do’y HP (0,4, @', 1)
0 4an Jj

xfPz0,1), Gj=LI1LUV; (14
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where H{? denotes the corresponding matrix element
of H®. It is worth noting that the interaction term
introduces coupling between the components of the
angular flux as long as H® is non diagonal.

3.5. Solution of the vector transport equation

It can be shown that equation (14) has a solution
similar to that described by Fernandez et al. (1989)
for the scalar transport equation (10), in terms of the
partial fluxes for once-, twice-, etc., scattered pho-
tons, i.e.

o)

[Pz, 0,4)= ¥ [Pz, 0,1),

k=0

(15)
with

1
Doy z, @, A’) =3 tys”(‘u’ }')
S 3]

xexpl:—%](l +sgnnsgnz), (16)

and

1= [z —tl|u
SOz w0,4)=— f dr ex (— )
2l ) T

x (1 + sgn n sgn(z —-‘C))f dl’f do’
0 4n

xY HP (0, 4,0, 1) f P01, 0, 1), (172)
]

where (i,j = 1, ||, U, V). Equation (17a) is valid for
n > 0. It is worth noting that no assumption was
made as to the kernel shape, which renders the
solution very general.

It is customary to employ an equivalent expression
to equation (17a) where the integral over z is divided
into two parts, according to the sign of (z — t). The
solution for positive z is

1 {(1+sgnn) ( zu)r
DOz, @0,4)=—{——expl ——| | dt
Fe o) Inl{ 2 ™ i)l

xexp(ﬂ)]. dl"[ do’'Y HP (0,4, @', 1)
nl) Jo an j

1__ -]
Xf,“"""’(r,w’,i’)+£———sfl@f dr
0

xexp(—z>j dl’f do’'Y HP (0,1, @', 1)
I"I 0 4n J

x f{Pe=-Ur 42, @', }.’)}. (17b)

The coupling of all the components of the (n — 1)th-
order in every component of the (n)th-order is appar-
ent in equations (17a) and (17b).

The iterative scheme of equations (16) and (17),
as does the scalar model, produces an analytical
Monte Carlo-like solution which is very useful
for studying multiple scattering processes with
the insertion of the appropriate interaction ker-
nels. The sum of equation (15) converges in a
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Fig. 3. Principal mechanisms of photon and electron scattering in the low energy y-ray regime. Scattered
electrons feedback new photons into the photon interactions cycle, and, therefore, the full transport

problem should be solved with two coupled systems

of transport equations, one for polarized photons

and one for polarized electrons. The photon transport equation (14), which neglects the electron

interactions, is an excellent approximation when the

probability for bremsstrahlung is low, i.e. for low

energies of the scattered electrons.

few terms because the interaction kernels for
photons are less than unity. As equation (17)
was derived by considering only pure photonic
transport, we can only iterate over the
photon—photon lines of the photon—electron shower
represented in Fig. 3. However, this approach
remains valid since these processes are responsible
for the generation of the majority of the new
photons. In other words, the neglected elec-
tron—photon chains have a sufficiently low prob-
ability to modify the results obtained with this theory
as long as the excitation energy E, is not much greater
than 100keV. The bremsstrahlung radiation has
an energy distribution from the electron energy
down to zero.

3.6. First- and second-order scattering intensities

The albedo partial fluxes and the scattered partial
intensities are related through the relationships

IO, 1) =nlf 0,0, 1), n=12,....(18)

The higher the order of emission the lower the
corresponding intensity. This renders the addition
of the first two orders—one and two collisions,
respectively—in most of the cases responsible for
the main part of the total emission for almost all
the target materials within a wide range of excitation
energies.

From equations (17) and (18), we obtain the
L components of both the first-order intensity

12%1)(&,’1)=Wj d}_fj‘ do’
0 4n
9 (14+sgnn’) 1 1

2 Il o o

Il In’l

xTHE @ Lo, )70, 1), (09)
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Fig. 4. Physical meaning of the single and double scattering chains involving the photoelectric effect, and
Rayleigh and Compton scattering. For each chain are indicated the equation numbers for the computation
of the corresponding intensity term. Y, L and C denote the kind of source (unpolarized, linearly polarized

and circularly polarized, respectively) used to deduce the relationship.
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Equations (19) and (20) are the expressions
(Fernandez and Molinari, 1993) for calculating the
intensity contributions (at the direction w, and as a
function of wavelength 1) for a one-collision chain

(@', 2)— (o, 4),
and for a two-collision chain
@", 2~ (@, )= (@, 1),

respectively. The lower indices = and # represent
valid (probabilistically independent) photon—photon
interactions in the low energy y-ray regime as, for
instance, the photoelectric, the Rayleigh and the
Compton effects, whose contributions to the photon
cycle are shown in Fig. 3. Figure 4 lists the nine ways
of combining these three processes to produce the
two-collision chains which contribute the second-
order intensities whose L components can be calcu-
lated with equation (20).

4. THE EFFECT OF POLARIZATION ON THE
PREVAILING INTERACTIONS IN THE
LOW ENERGY y-RAY REGIME

Photons can interact in different ways depending
on their energy (e.g. Compton and Alison, 1935;
Evans, 1955; Jauch and Rohrlich, 1976; Agarwal,
1991). The photons in the low energy y-ray regime
interact with the electron shells which surround the
nucleus. The nucleus itself does not contribute to the
scattering or absorption of photons.

The interaction of a photon of energy Av with an
isolated atom A has the effect of changing the atom’s
state from |i) to |f), which can be expressed as

@n

Equation (21) denotes the type of photon-atom
interaction of interest in this work, having one initial
photon and only one resulting photon. 4,denotes the
atom plus all the non-photonic particles (such as
electrons) produced in the reaction.

There are three major photon-atom processest
whose influence prevail in the low energy y-ray
regime (Davisson and Evans, 1952; Hubbell et al.,
1974; Creagh, 1987): the photoelectric effect in which
the photon causes the ejection of an electron leaving
a hole in the atom which, when the vacancy is filled
by an electron from another level, emits a fluor-
escence photon having the energy difference between
the two levels; the unmodified or Rayleigh scattering
in which the photon transfers momentum to the atom
but not energy; and the modified or Compton scatter -
ing in which both momentum and energy are trans-
ferred to the electrons comprising the atom.

What we call an interaction may not be strictly a
single process. Any sequence of physical processes in
rapid succession, originated by a photon and produc-

A+ hvi—> A+ hv,.

+There are also “minor” processes such as X-ray resonant
Raman scattering that also exist. They are observable
only under specific conditions.

ing another (other) photon(s), can be statistically
considered as a unique interaction, as occurring for
example with the photoelectric effect (see Fig. 3).

The resulting (or secondary) photon from an inter-
action may collide in turn with another atom, starting
a multiple chain of events that we want (and need) to
study. However, not only photons are produced in
the photon-atom interactions. The photoelectric
effect and the modified scattering cause electrons to
be ejected from the atom which in turn can produce
new lower energy photons. Since these contributions
render the transport problem far more complicated
we shall neglect this work bremsstrahlung (braking
radiation) from Compton and photoelectrons (May
and Wick, 1951; Olsen and Maximon, 1958, 1959;
Olsen, 1968; Tseng and Pratt, 1973; Alexandropoulos
et al., 1988); photoionization due to Auger electrons
(Bishop and Riviere, 1969), photoelectrons (Ebel
et al., 1971) and Compton electrons (Stoev, 1992);
and also other photon sources such pair production—
annihilation (Fano, 1949b; Wick, 1951; Olsen and
Maximon, 1958, 1959; McMaster, 1960; Olsen, 1968;
Maximon and Olsen, 1962; Kel’ner, 1969; Tseng and
Pratt, 1974).

The single-process scalar kernels play an important
role in transport theory. They represent the prob-
ability density—by unit wavelength, by unit solid
angle and by unit path—that the process may change
the phase-space variables from (@', 1) to (@, 4).
Therefore, the scalar kernel is directly related to the
double-differential scattering coefficient of the inter-
action. Thus, the scattering coefficient for the process
T can be obtained from the kernel £r(w, 4, @', 1")
using the relationship

(M, 0) = J diJ‘ dot (o, o' 1), (22a)
0 4n

allowing the comparison with experimental or theor-
etical data. The scalar scattering kernel is usually
defined for an average polarization state of the
incident radiation.

Similarly, the matrix kernel K$(w, 4, ®’, 1) (in the
S system) satisfies the equivalent relationship

aT(A’,w’)=(l,0,0,O)I dlf do
0 4an

x H (o, 4, ®’, ")

o o o -

=J d).J. do kP (0,4, 0',1)
0 4n

= I di J. dofr(o, i, 0,1, (22b)
0 4n

where H was defined in equation (11b), the column
vector on the right side represents an incident unpo-
larized beam, and the row vector on the left side
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represents a detector insensitive to polarization.
Analogously, we can write in the system L
Or1 (A' /’ w’)
oA, 0
or@, @) =(1,1,0,0) | T

0

1 @
=-(1,1,0,0)| di| de
2 0 4n

x HB (o, 4, 0’, 1)

52 zj dAJ do

x HB(o, 4, ", 1)

SO = =

=1J le‘ dofr(o, 1,0, 1)

i u(wa A'a w/’ )HI) (220)

"MN

In the last equallty of equation (22c) we defined, for
convenience, the matrix kernel in the system L as

K%)(w, 2" wl’ j',)

= kT(w7 j', w’: AI)T(II")(GL j” (I)I, '1/) (23)
where kr(, 4, ®’, 1’) denotes the same scalar kernel
(i.e. depending on average polarization) which ap-
pears in equations (22a) and (22b). From equations
(22a) and (22c), the elements #;(w, 4, ®’, 1°) of the
upper left 2 x 2 submatrix of T in equation (23) must
satisfy the relationship

-Z Zt,,(w,lw Vy=1,

lljl

(24)

which expresses one of the transformation rules
between the matrix elements of K in the systems S
and L. From equations (22) the analogy between the
scalar kernel £;(w, A, ®’, A’), built for an average
polarization state, and the matrix kernel [, applied
to unpolarized incident radiation and polarization
independent detector, is apparent.

Additionally, we can obtain from equation (22c)
the normal and parallel components (67, (A’, ®”) and
o (A, @), respectively] of the scattering coefficient
(for incident unpolarized y-rays)

1
a“(z',w')=5f dl'[ do
0 4n

x kr(@, A, @', A7) (4 + t2),

and
a”(l’,w’)=-;—J. dlj do
(] 4n

x kp(@, 4, @, A) (ty + t). (25b)

(25a)
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The cross sections for the interaction processes of
interest can be calculated independently. They consti-
tute the main part of the total attenuation coefficient
(McMaster et al., 1969; Storm and Israel, 1970;
Veigele, 1973; Hubbell ef al., 1986; Saloman et al.,
1988; Cullen et al., 1989), so we can define the total
attenuation coefficient as

(26)

where o and o are the Compton (incoherent) and
Rayleigh (coherent) integral attenuation coefficients
and 7 is the photoelectric attenuation coefficient.

If we consider attenuation of photons, then at low
energies the atomic photoelectric effect predominates,
while at intermediate energies Compton scattering
dominates. If, however, we are concerned with scat-
tering of photons, then Rayleigh scattering dominates
at low energies or forward angles, while Compton
scattering dominates at higher energies or larger
angles.

In what follows we shall write the atomic inter-
action kernels for the three dominating processes that
participate in low energy y-ray photon transport.
Since our aim is to explain the contribution of
multiple scattering terms, we shall use the coherent
and incoherent scattering factor approximation to
describe scattering cross-sections. These scattering
factor approximations assume a smooth behaviour to
the scattering cross-sections so they cannot explain
scattering resonances (Kissel and Pratt, 1987) such as
anomalous scattering (Kane et al., 1986; Bui and
Milazzo, 1989). The effect of the relative motion of
the electrons with respect to the incident photon
beam will not be addressed since it complicates the
transport equation. The relative motion of the elec-
trons does not have a significant effect on the coher-
ent scattering. However, at least for the incoherent
case, the scattering factor can be obtained with an
integration of momentum profiles of single orbitals
(Ribberfors and Berggren, 1982) giving a simple
connection between the Compton profiles and the
corresponding scattering factor. Polarization effects
will be considered in detail, and will be discussed
separately for every scattering process.

H=0c+0og+T1,

4.1. Photoelectric effect

The photoelectric effect is an indirect photon-
photon process. In the photoelectric effect a photon
is absorbed by an atom creating a hole in the atom
with the ejection of an electron. The energy of this
electron is the difference between that of the incident
photon and of the binding energy of the electron. The
vacancy will be spontaneously filled by means of an
electron transition from a higher energy level. The
deexcitation energy is carried off with the emission of
a characteristic photon or Auger electrons. Statisti-
cally, the two combined processes (absorption/
ejection) may be considered as a single interaction.
The theory of the photoionization process has re-
ceived great attention (e.g. Fano and Cooper, 1968;
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Starace, 1982; Amusia, 1990), the photoelectric cross-
section has been largely investigated with experiments
and theoretical calculations (Scofield, 1987), and
collected data are available elsewhere (Scofield, 1973;
Saloman et al., 1988).

The scalar kernel for the production of a character-
istic line of wavelength A; [see Bearden (1967) for
X-ray wavelengths] from a pure element target due to
the photoelectric absorption of photons with wave-
length A’ (Fernandez, 1989) is given by

1
£p, (@ 4,0, 2)=—0, (A)6(A —4)
i 4r

x[1—2' -2, @7

The isotropy of the secondary X-rays is reflected by
the kernel independence on @ and by the 47 normal-
ization factor. The line is assumed to be monochro-
matic, neglecting its natural width (Krause and
Oliver, 1979) that is significantly less than the instru-
mental width (Salem et al., 1977). The XRF emission
probability density Q;;,(4) for the line 4, (in [cm~'])
is given by the probability relation

0, (A) =1,A) (A = 1T ), T, (28)

where 7,(1") is the photoelectric attenuation co-
efficient [cm~!] of the emitter element s, J,; is the
absorption-edge jump (McMaster et al., 1969;
Scofield, 1973; Saloman et al., 1988; Cullen et al.,
1989), w,; the fluorescence yield (Fink et al., 1966,
Bambynek et al., 1972; Salem et al., 1974; Krause,
1979; Langenberg and Van Eck, 1979; Cohen, 1987,
Hubbell, 1989) and I'); the line emission probability
of the line at 4, into its own spectral series (Scofield,
1969, 1974, 1975; Hansen et al., 1970; Khan and
Karimi, 1980). For compilations of calculated values
of 1,(A") for neutral atoms with a relativistic
Hartree—Slater model (renormalized to the Hartree—
Fock model for Z =2-54) see Hubbell and co-
workers (Hubbell et al., 1974, 1980; Hubbell, 1982),
and (without renormalization) Scofield (1973),
Saloman et al., (1988), Cullen et al., (1989) and
Trubey et al. (1989); for a discussion about the
significance of the normalization see Saloman and
Hubbell (1987). The line is emitted only when A’ is
lower than the threshold of the absorption edge
wavelength A, (Bearden and Burr, 1967; Cullen et al.,
1989) of the series to which the line belongs as
described in the Heaviside function % in equation
7).

The complete emission spectrum of the element s is
obtained adding all the single line terms:

1
‘P(wa '1, (I)’, }‘I) = E ; Q)., (A'I) 6(}' - j'z)

x [1 =@ —4,). (29)

The photoelectric effect has low sensitivity to the
polarization of the incident photon but is not com-
pletely insensitive to it. According to Fliigge et al.
(1972), after photoionization, the fluorescence X-rays

originating from the vacancy states with j = 1/2, (K
shell and L,, L,, M, and M, subshells, etc.) will only
be isotropic and unpolarized. However, those fluor-
escence X-rays which are emitted from the filling of
vacancy states with j = 3/2 (L;, M5 and M, subshells)
and with j =5/2, (M subshell) will be anisotropic
and polarized. This theoretical prediction was re-
cently confirmed experimentally by Kahlon et al.
(1991) supporting the hypothesis that the vacancy
states with j > 1/2 have a nonstatistical population
distribution of their magnetic substates and are
aligned. The level of percentage polarization
measured by these authors for the L, and L, lines was
86 (6)% and 29 (2)% for thorium and 79 (6)% and
36 (2)% for uranium.

Assuming that photoelectric X-ray emission is in-
dependent of polarization (as is the case with the
intense X lines), the matrix elements ¢#; of the polar-
ization kernel verify the relationship #,;, =1, =1, =
t,,, and we can write the matrix polarization kernel
for the emission of a characteristic line of wavelength
A; as

K%lz (0), l’ (D,, A/) = kP;,i (w’ A” (D,, j")

12 12 0 0
12 12 0 0

o o ool GO
0 0 00

where k,.h (0,4, ®’,1") was defined in equation
(27). The complete emission spectrum can be ob-
tained similarly as in equation (29). We get a
degree of polarization P,=0 for these radiative
transitions.

4.2. Rayleigh scattering

The coherent scattering is a process where the
photons change direction (momentum transfer) but
not energy (Kane et al, 1986). This scattering
takes place with the more tightly bound electrons of
the atom which behave rigidly during the interaction.
The Rayleigh atomic kernel for unpolarized pho-
tons, with phase-space coordinates (@', A") scattered
by a pure element target with atomic number Z
into the coordinates (@, A), is (Fernandez et al.,
1990)

£, 4, 0,4)=05(A—2A)(1+ (0 @)

8 F(J, 0 o, 2Z)
= .

o =pNZr3/(24) is a macroscopic attenuation co-
efficient (in [cm™!]), r, being the classical radius of
the electron, p the density, N Avogadro’s number
and A4 the atomic weight. The delta function
stresses the monochromaticity of the scattering. The
angular dependence of the kernel (31) is due to the
last two factors: the Thomson angular factor
representing an average polarization state, and the

@3n
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square of the atomic form factor comprising the
constructive interference from the whole charge dis-
tribution. The coherent form factor F(A',® ‘@', Z)
can explain atomic contributions that are signifi-
cantly greater than Z times the contribution from
one single electron. Special limits are F(4',1,Z) =
F(o0,0 - 0’,Z)=Z and FO, » - 0’, Z) = 0. Exper-
imental data tables of form factors, and references
to theoretical computations for many electron
atoms may be found in the classical paper of Hubbell
et al. (1975) and in more recent works (Hubbell
and @verbg, 1979); Schaupp et al., 1983; Kane et al.,
1986). A closed expression (Veigele et al., 1966) giving
approximate values for F is available. More precise
values are achieved with semi-empirical formulae and
fitting coefficients of theoretical calculations (Cromer
and Waber, 1974). The integration of scalar kernel
(29) [as described by equation (22a)] to obtain the
total Rayleigh coefficient was performed numerically
by McMaster et al. (1969), Hubbell et al. (1975) and
analytically by Hanson (1985).

Assuming that electron binding (in many
electron atoms) can be described by a polarization
independent form factor (Brown and Meyers,
1956, 1957; Kane et al., 1986), the matrix kernel for
Rayleigh scattering of polarized radiation becomes

o
)

Roylei?h

Compton a—s 1%% l;a.
Eo= 300 ke!
Eo= 600 ke

0.5

DEGREE OF POLARIZATION

g
=)

0 '3 60 s0 120 150 180
SCATTERING ANGLE (°)

Fig. 5. Degrees of polarization for Rayleigh and Compton
effects as a function of the scattering angle. The Compton
degree of polarization depends on the wavelength of the
incoming photon because of the relation between wave-
length and scattering angle in the Compton shift. It is shown
for several excitation energies from 60 to 600 keV. It is
apparent that both interactions have their maxima at or
near 90° scattering.

for the Rayleigh scattering is given by the relationship
1—(0- o)

PR(w: A., wl’ '1/) = l + ((D .w/)z ’

(34)

plotted in Fig. 5 as a function of the scattering angle

KP(, 4, @', ') =26 5(1 — 1')

_ tR(‘”? A” (J)', 'll)
T 1+ (o)

o o O

20 0 0
(1) 0 , 0 Fl,0 0, 2Z)
0o 0 VA
0 0 0 o
0? 0 0 0
2 0 0
0 20 o 0 (32)
0 0 20 - o’

(=

From equations (25a) and (25b), and using equation
(32), it is possible to compute the normal and parallel
components of the total Rayleigh coefficient, as

auu',w')=j d/lf dw £z(@, 4, ', ')
0 4n

1-(1 - o?cos’¥

I+ (@ o) (33a)
and
aR||(l’,w')=f dlj do £p(@, A, 0', ")
0 4n
em’? — 1-— v’ 2.}7
00 (1 —o - vcos . (33b)

1+ (0 o)
where the angle ¥ was defined in equation (llc).
Evaluated normal and parallel components of the
total Rayleigh coefficient for linearly polarized inci-
dent radiation [and therefore, with different exci-
tation conditions as those assumed in equation (25))
were calculated by Hanson (1986a, 1986b, 1986c¢).

As we shall show below, the degree of polarization

O between 0° and 180°. The graph shows clearly that
total polarization is reached only at 90° scattering. In
the other cases a partially polarized beam always
remain after scattering, except at 0° and 180° where
the polarized fraction vanishes. Equation (34) illus-
trates how scattering can be used as a polarization
filter because of the - @’. This also illustrates that
after the scattering, the degree of polarization de-
pends on where the scattered photons are observed.
Single scattering maximizes the degree of polariz-
ation. This fact has been used to produce polarized
X-rays by placing scattering blocks between an X-ray
tube and the sample (Wobrauschek and Aiginger,
1983; Wielopolski et al. 1989).

Complementary information on polarization
effects in coherent scattering can be found from the
following authors who have treated, either theoreti-
cally or experimentally, the problem: Brenner et al.
(1954), Brini et al. (1958, 1959), Sood (1958), Bobel
and Passatore (1960), Fuschini et al. (1960), Manuzio
and Vitale (1961), Standing and Jovanovich (1962),
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Cole (1963), Singh et al., (1964), Anand et al. (1965),
Williams and McNeill (1965), Somayajulu et al.
(1968), Somayajulu and Lakshminarayana (1968b),
Molak et al. (1971), Simon and Daniel (1977),
Dwiggins (1983), Roy et al. (1986), Hanson (1988a,
1988b, 1990), Hanson and Meron (1988).

4.3. Compton scattering

In incoherent scattering, energy as well as direction
is changed (Compton, 1923; Evans, 1958). This pro-
cess takes place with the outer electrons of the atom.
The Compton atomic kernel for incident photons,
with phase-space coordinates (w’, A”) scattered by a
pure specie target of atomic number Z into the
coordinates (@, ), is (Fernandez et al., 1990)

£e(@, A, 0, 1) = 6Kgy(A, A)S(V, 0 - ', Z)

1 , A=A
xl—5<l—m-w+ 7 > 35

C C

where
' A ’
K4, 4) = (7>

A L

and A.=0.0242631 A is the Compton wavelength.
The oKyy(A,A”) factor denotes the well known
Klein—Nishina differential cross section (Klein and
Nishina, 1929) representing an average polarization
state. The direction-wavelength delta in equation (35)
fixes the integration path in the phase-space along the
line 1 —o - @’ + (A" — A)/Ac =0 [this condition does
not account for the shift for bound electrons (Evans,
1958)]. S(A’,® - w’, Z) is the incoherent scattering
function which takes into account the electron
binding. Some special limits are S(4,1,Z2)=
S(0,0 - w',Z)=0 and SO0,w ®’,Z)=1. Data
tables and references to theoretical computations are
found in the paper of Hubbell et al. (1975) (note that
their ‘“‘scattering funciton” means S-Z here). A

closed approximate formula for S was obtained
(Veigele et al., 1966) with the Thomas—Fermi model.
Precise values of the S factor can be computed with
semi-empirical formulas and fitting coefficients to
theoretical calculations (Smith et al., 1975).

The pre-collision motion of the electrons has been
ignored in the kernel equation (35), limiting the
Compton peak to a monochromatic line. Because of
the Compton profile (that is the projection of the
electron momentum distribution on the z axis) the
width due to the scattered photons is larger than the
instrumental width. The more rigorous theoretical
treatment associated with the Compton profile is not
sufficiently tractable for extensive calculation and will
not be discussed here. However, the multiple scatter-
ing effects will be better appreciated in a context of
generality, independent of the state of excitation of
the atom and the chemical bond to other atoms.

A Klein—Nishina polarization dependent co-
efficient could be written in place of equation (36)
(Nishina, 1929; Evans, 1958; Stroscio, 1984), which
depends on the angle between the directions of
polarization of the incident (¢’) and scattered radi-
ation (¢). It shows the familiar relationship

AN (A A
Ky, 4= (—) {—, +—+ =244 e’)z}. 37
A A A
This statement means that the scattering cross section
determines the probability for a plane polarized
photon to be scattered in a certain direction and then
to pass through a hypothetical filter which accepts
only radiation polarized in a certain plane. Elliptical
polarization is not considered in that treatment.
Therefore, for a complete analysis of the polarization
effects it is convenient to use the Stokes method.
Assuming that the effect of the charge distribution
(in many electron atoms) contributes a polarization
independent scattering function and the spin of the
electron is randomly oriented before and is not
observed after the scattering (Fano et al., 1959), the
matrix kernel for Compton scattering becomes

L) ’ , 4 ;', 2 ’
K(C)(w’)'aw’)-)=_ - S().,w-w’,Z)é 1-
1\ 7

r

a a
z -7 Z_
L+5+26(-2) 5-1
a a
8 31 1+3
0
L 0 0
r
1+%+2b(b
Ao, 4,0, 1) 3-1
T a+bb-2)
0
0

o o s i
Ac
.
0 0
0 0
21-b) 0
0 a(l—b) |
a N
—2) ——
) 5 0 0
a
1 _
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where we have defined the auxiliary variables

A A A—=1
—/l’+l’ and b= e
In the limiting case of 1 =1’—c0, we obtain the
matrix of Rayleigh scattering.

Several authors have paid attention to the build-up
of a much more detailed polarization matrix depend-
ing on the initial and final polarization states of both
interacting photon and electron (see Franz, 1936,
1938; Fano, 1949a; Lipps and Tolhoek, 1954a, 1954b;
Tolhoek, 1956; Olsen, 1968; Ewald and Franz, 1976)
but this extent of detail is excessive for the scope of
this paper. However, it is necessary for studying the
effects of polarization on the scattering of y-rays in
a target exposed to a magnetic field (Gibbs et al.,
1989; Sakai et al., 1989).

From equations (25a) and (25b), and using
equation (38), it is possible to compute the normal
and parallel components of the total Compton co-
efficient, as

a

1>
aa(z',w')=§j dlj do £c(, 4, @', 1)
0 4n

a +2b(b —2)cos’ ¥
a+b(b -2

(392)
and
1 0
aqd, )= EJ dA I do £c(0, 1, 0, 1)
0 4n

a +2b(b —2)sin* ¥
a+bb—2)

with the angle ¥ defined by equation (11c). Evaluated
normal and parallel components of the total Comp-
ton coefficient for linearly polarized incident radi-
ation [and therefore, with different excitation
conditions as the assumed in equation (25)] were also
calculated by Hanson (1986a, 1986b, 1986c).

As we shall show below, the degree of polarization
for Compton scattering is given by the relationship

A—2A < 5_ A=A )
Ac Ac
A A A=A [A-X )
A + A + Ac ( Ac )
In contrast to the degree of polarization of Rayleigh
scattering [equation (34)] which does not depend on
wavelength, the degree of polarization of Compton
scattering depends on both, the scattering angle and
the wavelength, as it is shown in Fig. 5.
Complementary information on polarization
effects in incoherent scattering can be found from
the following authors who have treated, either
theoretically or experimentally, the problem:
Wightman (1948), Spencer (1948), Spencer and Wolff
(1953), Metzger and Deutsch (1950), Hoover et al.
(1952), McMaster (1954, 1961), Frolov (1960), Miller
and Wilcox (1961), Huber et al. (1963), Singh et al.
(1964, 1965), Hamilton and McIntyre (1967),
Alexandropoulos et al. (1971), Bock (1971), Milton

» (39b)

Po(w, 40", A)= . (40)
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et al. (1972), Tsai et al. (1972), Kel'ner et al. (1975),
Ewald and Franz (1976), Leubner and Metzler
(1984), Xu (1984), Hanson (1988a, 1988b, 1990),
Hanson and Meron (1988).

4.4. The total kernel

According to our previous assumptions about the
composition of the total attenuation coefficient we
can write an expression, analogous to equation (26),
for the total scalar kernel for photons in the low
energy y-ray regime

Lo, 4 o', ) = £p(@, 4, @', X')
+ 4@, 4,0, )+ Y A, (@, 4,0, 1), (413)

and for the total matrix kernel
KY(w, 4, o', 1) = KP(0, 4, 0", 1)
+ KP(, 4, 0, A)+ ), K‘,{g (0,4, @, 1), (41b)

which, integrated as in equation (22), allows us to
recover the radiative part of equation (26).

Up to now, we have considered the above kernels
for a target of a pure element with atomic number Z.
We will now analyse how to determine attenuation
coefficients for materials composed by several species
of atoms. We denote by W, the weight fraction of the
element j which satisfies the relationship

SW=1,
J

The mass attenuation coefficient (in [cm?/g]) for a
composite material obeys the well known relation
(Davisson and Evans, 1952; Evans et al., 1955)

L-vw, (ﬁ) : @)
P PJi
where p is the total attenuation coefficient given by
equation (26) and (u/p); is the total mass attenuation
coefficient for the single element j. The coefficients of
the single interactions follow a similar relationship.
The total kernel for a composite material is easily
obtained from the kernels for the single sample
components replacing all the attenuation coefficients
by mass attenuation coefficients in equations (29),
(31) and (35).

42)

£, Ao i)=Y Wj{lk(w, L',
j

+‘C(w’ l’ wl’ A”)‘j+z ‘Pl‘ ((D, A’s wl, A’)L} ’ (443)

where £, (o, 4, ®’, A’)|; represents the “mass” kernel
for the interaction « with the specie of atoms Z;.
Analogously, matrix kernels satisfy the equivalent
relationship

K, 4, ', A) =} W, {'KS("(‘”, Lo’ L)
J

+KP @, 4,0, 1)+ L KE (0, 4, ', 1’)Ij} . (44b)
i
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5. EFFECTS OF POLARIZATION FOR SCATTERED
RADIATION FROM UNPOLARIZED SOURCES

It has been shown in Section 3.5 that equation (8)
has the general flux solution (15) similar to that
described in Fernandez et al. (1989), in terms of the
partial fluxes for once-, twice-, etc., scattered pho-
tons. The components of the partial intensities can be
easily derived from the components of the albedo
partial fluxes (17). We are interested in the Stoke’s I
component (or I, + I, in the L system) which gives
information on the number of photons carried by the
wave. Particularly, we are interested in showing how
much it changes our prediction of the intensity when
polarization is considered rigorously as in equation
(17). The other intensity components Q, U and V are
related to other effects, intrinsic to polarization, and
will be analysed successively.

5.1. Multiple Scattering Intensities

The I component of the intensity vector is equival-
ent to the intensity of the scalar model. Therefore,
this magnitude has similar properties. The higher the
order of emission the lower the corresponding
intensity. This renders the addition of the first two
orders—one and two collisions, respectively—
responsible for the main part of the total emission for
almost all target materials within a wide range of
excitation energies. See Fig. 4 for the possible combi-
nations giving second-order intensity terms.

As we have seen before, the absence of polarization
in unpolarized y-rays is mathematically expressed by
means of two oppositely polarized beams (the ¢
vectors are perpendicular to each other) of the same
intensity. Hence, a monochromatic and collimated
source of I, unpolarized photons cm~2s~! is rep-
resented by the source function

(45)

O =

FD(w, 1) =§5(w —g) 5(A — 4)
0

If 2 represents any of the processes of interest, its
corresponding matrix kernel [see equation (23)] has
the reduced expression

K9, 4, 0", 1) =4 ,(0, 4, 0, 1)

a, a, 0 0

x @) an 0 0 . (46)
0 0 a5 O

0 0 0 ay
This matches all of the kernels of interest in Section
4 and agrees with the symmetry relations of the
scattering processes (Van de Hulst, 1957). In equation
(46) k, (o, A, w’, 1) is the scalar kernel depending on
the average polarization, and the non-null matrix
elements <, are shown explicitly. Substitution of
equations (45) and (46) into the solution of the
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transport equation gives, for the first-order, one-
collision chain

(w01 AO)—G' ((D, A)

107 (@, ) = A(no, 4,1, 2)
X ka ((0, '19 @, ;‘0) = Ig.l,))(w, A’)~ (473.)

Equation (47a) is for the generic interaction =
(Fernandez and Molinari, 1993) and illustrates the
first-order intensities in both theories are equal. We
have defined the auxiliary function 4

(1+sgnn,)(1—sgnn,)

A(nlyll"lbli): 2 2

(b1
|’I1| M
Ini |'12|

The other Stokes components of the first order vector
intensity are

(47b)

109 (@, 1) = 3419, Ao, 1, Ak, (@, 4, @, 4o)

a)g
X (@), — a@y)cos 2¥, (47¢c)
IS (@, 1) =349, Ags 1, A)k, (@, A, @3, Ag)
X (@) — @y)sin 2%, (47d)
)9 (w, 1) =0, (47¢)

where ¥ is given by equation (11c) with w, in place
of w’.

Equivalently, we can represent the first-order
vector intensity I)® decomposed into two beams,
the unpolarized and the polarized fractions, given
by

IO = IQO + I, (482)
where
I&))(S)“ = %A ('10’ AO’ n, l)ka ((D, j., ), ).0)
1
0
X ay+ ap+ ay) ol (48b)
0
0P = LA (ng, A, 1, A)k, (@, 4, @2y, A)
1
cos2¥
X(an=an) | o oy (48¢)
0

The polarized fraction I} represents a beam lin-
early polarized along a plane forming an angle y with
the scattering plane. It is worth noting that equation
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(48a) can be expressed as a function of the degree of
polarization [see equation (5¢)]

lst))(S) = A('IO’ AO? n, 1)",(‘0, 11, g, ,10)

1
cos2¥
X .
| sin2¥
0
1
0
+(1-P,) 0 , (48d)
0
where
s on UG5 + 10, +13)
P (@4 0 1) =—"—g" -

(a)
= %(“22 —ay) (49)

Equation (49) is the explicit expression of the degree
of polarization for the interaction «. It is the fraction
of polarized (scattered) radiation after one single
scattering collision

(@', 2)— (@, 4).

The second-order intensity due to the collision
chain

(@, o) —— (@', 1) —— (@, 4)

involving two generic interactions 2z and ¢ (Fernan-
dez, 1993a) is given by

595

for the interactions « and 4, respectively) which are
defined by the relationships

cos ¥,
_My/1=n?—n'/1-nicos(@—9) 550
(1— (@ a))"? ’
and
cos ¥,
_ny1=n"—n'y/1—n’coslp — 9" (50d)

(- o))"

Subindices « and £ denote two valid (probabilisti-
cally independent) photon—photon interactions in the
low energy y-ray regime as, for example, the photo-
electric, Rayleigh and Compton effects mentioned in
Section 4. The expressions for the components Q and
U can be also obtained using equation (17), but are
substantially more complicated and will not be
included in this article. For the second-order we get
also

125, (@, 1)=0, (50¢e)
i.e. the polarized fraction after the second scattering
is also linearly polarized. This property was first
noted by Spencer (1948) and can be extended to any
number of collisions. However, between the first and
the second collisions three important properties are
changed. The polarized fraction of the beam is the
first one, as we shall discuss within the context of
Rayleigh and Compton interactions in Section 5.1.3.
The second one is the orientation of the line of
polarization, which is different for the polarized
fractions after one and two collisions. This suggests

® 1
Ig).g:)(w’l)=‘4(”0’ 1'01'7’ l)'[ dl,j dw’i;,',_l
0 4n

(1 + Sgn "I) kd(w, )'! w,, l’)kq(w: A’ wO» A’O)(l + gmf(w’ }" w” l” wo, Ao))

X 2

4 {L=ssnn) ks(@, 4, @', Ak, (@, 4, a3, 4)(1 + G 4(@, 4, @', 1", &%, &)

’

2

B Hu
—+——/—
[nl " In’l
; (50a)
b B
Inol ~ In’|

When compared to the expression for the same
intensity deduced from the scalar model (with aver-
age polarization kernels), there is a difference of a
corrective factor %_,(w, A, 0, A’, @y, 4,) which is
defined as

b (@Ao', A, 0 ) =Py, 0,1
x P (@', ', 0y, Ag)cos 2(¥, + ¥;). (50b)

P, (o, 4, ®’, A’) is given by equation (49), and ¥, and
¥, are the angles of a spherical triangle (as in Fig. 2,

that by filtering the emitted beam with a polarimeter
before detection we are able to separate the contri-
butions from a different number of collisions, in this
case, from one and two collisions. This result can
be easily extended to higher orders of multiple
scattering. The third one is the change in the intensity
(component I) which shall be the object of a detailed
analysis for the interactions of interest. However,
we can make some observations of general character
about it. From equations (47a) and (50a) it is
easily seen that the scalar model is a first-order
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approximation of the I component in the vector
model because both descriptions are coincident for
the first-order component I. The difference in the
second-order intensity is dependent on the extent of
the correction ¢ which does not exist for the scalar
model. Conceptually, the difference is that the scalar
model uses an averaged polarization state with each
interaction, while the vector model updates the cor-
rect polarization state after each collision. The val-
idity of the scalar model is supported by the fact that
the first-order intensity term is much greater when
compared to the higher order intensity terms. How-
ever, as we shall see below, second-order contri-
butions involving the Compton effect produce
continuous spectra which, although not excessively
higher than those predicted with the scalar theory,
concentrate the difference in certain portions of the
spectrum, making them important for the correct
computation.

5.1.1. Characteristic lines

The photoionization process contributes to the
X-ray spectrum a number of sharp lines that give
qualitative and quantitative information about the
elements in the target. X-ray fluorescence (XRF), a
spectroscopical method of analysis (Bertin, 1975), is
based on the existing relation between the line inten-
sities and the composition of the specimen. Certainly,
this technique requires the knowledge, as detailed as
possible, of all the influences that can modify the
intensity of the lines and directly affect the precision
of the analysis. On the other hand, the understanding
of the changes in the line intensity is necessary for
X-ray spectroscopists investigating the atomic par-
ameters involved in the X-ray emission, frequently
related to the characteristic lines. The correct predic-
tion of the influence of the experimental conditions
on the measurements contributes to appropriate
designs of both the experiment and the apparatus,
improving the quality of the data.

The study of the multiple scattering of the
photoelectric effect in XRF gives a clear example of
the theoretical approach used for several decades
in X-ray spectrometry: the differential intensity
(satisfying the Beer-Lambert attenuation law) is
integrated over volume to obtain the intensity
contributed by the process. This approach, very
intuitive, has two obvious drawbacks. Firstly, with
the increase of the multiplicity of scattering, it
becomes difficult to write the expression for the
differential intensity. Secondly, it is very restrictive in
the kind of interactions tractable since it cannot be
easily applied to processes with certain complexities,
e.g. anisotropy.

The first complete deduction of the primary, sec-
ondary and tertiary XRF intensities reported by
Sherman (1955, 1959) was performed with that pro-
cedure. A decade later Shiraiwa and Fujino (1966),
with the same technique, obtained the XRF intensi-
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ties for polychromatic excitation as a function of the
glancing angles of incidence and take-off. These
intensities were recently recalculated (Fernandez,
1989) applying the solution of the scalar transport
equation (10), and the former expressions were cor-
rected. The fourth-order intensity was also found
(Ferndndez and Molinari, 1990), showing the validity
of transport theory for the analytical study of higher
orders of scattering.

The photons scattered by other processes (i.e.
Rayleigh and Compton effects) also contribute to
enhance the XRF intensity, modifying the height and
the low energy tail of the characteristic lines, and
yet the y-ray lines emitted by radioactive sources
(Manninen et al., 1986). Over the past years, there
has been a continued interest in revealing this
influence. Several authors have attempted calcu-
lations of the magnitude of these contributions. The
results ranged from a few percent to more than 30%
of the first-order characteristic line. They used differ-
ent approaches, from crude theoretical approxi-
mations (Garg et al., 1985; Singh et al., 1987, 1989;
Campbell et al., 1989), to Monte Carlo simulations
(Rollason et al., 1987, Méray, 1988; Méray and
Hazi, 1988; He et al., 1990), to a simplified model
of photon diffusion with a strong simplification of
the anisotropy in the scattering cross-sections (Keith
and Loomis, 1978). These results cannot give a
satisfactory solution to the problem. In contrast,
transport theory has been successfully applied
to this problem, giving analytical expressions
(Fernandez et al., 1990; Fernandez, 1992) which
describe in detail the four intensity terms corres-
ponding to the possible combinations of one
Rayleigh or Compton scattering and one photo-
electric collision.

The assumption that the photoelectric interactions
are independent of polarization was discussed in
Section 4.1. The matrix elements of the polarization
kernel verify the condition &, =«,,=2,. From
equation (49) we get P,=0, and therefore,
%p.=%.,=0 for any scattering interaction z. As-
suming the photoelectric interactions independent of
polarization, not only can the first-order intensity (i.e.
primary) be calculated with the scalar equation but
also the second-order intensities involving any other
process, such as Rayleigh or Compton scattering.
Following Fliigge et al. (1972), we should expect to
find some difference only in those second order
intensities involving transitions from states of
vacancy with j =3/2 (L,, L, lines) or higher, which
we shall not consider in this paper.

The multiple scattering effects on characteristic
lines, in the frame of the scalar transport theory, are
summarized in the following subsections.

5.1.1.1. Chains involving the pure photoelectric
effect. The zeroth-order flux—equation (16)—is
independent of the interaction because it is the atten-
uated source excitation. Therefore, its albedo contri-
bution is zero as may easily be seen.
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The first two orders of the XRF intensities can be
straightforwardly calculated (Fernandez, 1989) from
equations (33) and (35)

I (w, 1) = Zé(}. A)
x 0y, (Ao)[1 — % (Ao — 4,

129 (@, 4) = 25(;_ l)A(ﬂo’A:t"’}')

A(ﬂo,}-o ’19'1)
4z

(D

. {z QIO g5, -2,

Jj

x[1 — (3 — ,1,,)]{""" (1+ "°>
Hilnol

+ (' +u,lrnl)}}

where the auxiliary function 4 was defined in
equation (47b). Both contributions have azimuthal
symmetry. Third- and fourth-order intensities have
been calculated in a similar way, having recourse
to the symbolic algebra program MACSYMA
(Fernandez and Molinari, 1990).

Since the photoelectric effect is the dominating
process in the emission of the characteristic X-rays,
the multiple scattering of the pure photoelectric effect
has an important weight in the total intensity. How-
ever, its importance can fluctuate depending on the
absorption properties of the material evaluated at the
energies of the participating lines. Besides, a net count
of the number of lines contributing to the enhance-
ment is only possible for a given sample and exci-
tation energy. Therefore, the only way to predict the
total intensity is by calculating specifically the mul-
tiple scattering terms with equations (51) and (52).
Third- and fourth-order contributions could be neg-
lected in low-accuracy computations.

It should be noted that the photoelectric enhance-
ment is even possible in pure targets since character-
istic photons can produce photoemission in other
series of the same species of atom. The L lines, for
example, receive enhancement from the excited K
lines of the same element. This fact should be kept
under consideration for measurements of L series
parameters.

5.1.1.2. Chains of mixed interactions involving the
photoelectric effect and Rayleigh or Compton scatter -
ing. There are four contributions involving one scat-
tering process and one photoelectric effect. Two of
them describe the intensity contributed by coherent
and incoherent scattered photons that, absorbed by
photoelectric effect, result in XRF emission. The
other two correspond to Rayleigh and Compton
scattering of characteristic radiation to a direction
towards the detector. In what follows we shall obtain
closed relationships for them, using the results of
Section 5.1.

The mathematical complexity in the computation
of these intensities depends on whether the scattering

(52)
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is Rayleigh or Compton. The Rayleigh scattering
contributions are discrete and have the same energy
as the characteristic line that they modify. The inten-
sities contributed by the Compton effect, on the
contrary, depend on the coupling between the scatter-
ing angle and the energy shift, which introduces some
difficulties in the computation.

5.1.1.2.1. Rayleigh—photoelectric: The XRF inten-
sity contributed by the coherently scattered source-
beam is obtained by replacing the kernels £, and £,
by £z and £;, respectively, and %z, =0, in equation
(50a)

ACo> Ao %
3% (@, 1) =384 - ,1,)_(ﬂion_'1_)

X203, (ho)[1 = (o -

f f dn’ (1 + (@ - o))
e

Inl

2n
x FX (g, ®" - 0§, Z)+j do’
0

Al

§ f dn’ (L+ (@ - 0f”))

o ke b
[no]
x F(Ag, 0" - 0§, Z)| , (53)
where
o, o8 = tnn,

+/1=ni/1—nicos(p, — @,). (59)

The anisotropy of the Rayleigh scattering is given
by the square of the dot product of the direction
vectors. The anisotropy in this case is along the
direction ;.

5.1.1.2.2. Photoelectric-Rayleigh: The term due to
discrete Rayleigh scattering of XRF characteristic
photons towards the detector (i.. in the @ direction)
is given by the substitution of £,, £z and ¥ =0, in
equation (50a)

Ao, Ao, 1, 4) @

IE%’).(R (o, A)=06(A-4) an Qz, (%)
x[1 =2 — 4,)]
J' J" dn’ (1 +(w -0™M)?)
ﬂi
',,

2n
x F(4;, 0" - 0%, Z) +I do’
0

; F, 0 -0, Z)|.
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Inol ~ n

. I'd_n_' (1 +@ 0P
0

(55)
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Equation (55) differs from equation (54) in that e,
and 4, in the integrals have been replaced by w
and J;. Therefore, the anisotropy has been shifted
from the incidence to the take-off direction. The
change of the wavelength has a more subtle effect
since it changes the evaluation points of the mass
attenuation coefficients which are complicated func-
tions of 4 and Z. Clearly, by exchanging the order of
the same interactions we obtain different intensity
contributions.

5.1.1.2.3. Compton—photoelectric: The intensity
contributed by photoelectric absorption of the inco-
herently scattered photons of the source is given by
the substitution of £, £, and 9., =0, in equation
(50a)

A("O’ '109 1, j’l)i

I2D (@, 4)=6(4 - 4;) e o

Jo+ 24
XJ dA'Ken(1', 40)25, (A)S (Ao, @', Z)

X
Pidn' AB; —ai)
x[1—w@ —A,)) L re ﬂ+,‘_'
Inl " n’
1

X
VA =11A=nd)— (@ —n'n)
+J""’d_'l,'%(ﬂ£—aé)

’

o N Ko K

ol -~ n’
1

X ’
VA=1A (A =n3)— (@ +n'ne)?

where a’ =1+ (Ag— 4)/Ac, A" = /(1 —n)(1 —a™),
a; = max(oa a’n, —4), ﬁ; =min(l, a”lo + A’)r a; =
—min(0, a’n, +A’) and B3 = —max(—1,a’n,—A’).

5.1.1.2.4. Photoelectric—-Compton: The intensity
contribution to the XRF photons Compton scattered
towards the detector is given by the substitution of
£p, £c, and ¥, =0, in equation (50a)

A(no, 4o, M A) o
T A’_C KKN("’ j-i)Ql; ()'0)

(56)
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x%(ﬂl—“l) 1
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Inl " n’
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1
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where a=1+(4,—4)/Ac, A= /(1 —-9d)(1-ad,
o, = max(0, an — A), B, = min(1, an + A), @, = —min
(0, an + A) and B, = —max(—1, an — A).

The integration limits in equation (56) and (57)
cannot exceed the extremes — 1 and 1. The Heaviside
functions indicate the range of validity of the inte-
grals.

The (P, C) intensity is continuous, in contrast to the
contributions (54), (55) and (56) that are discrete. The
continuous (P, C) spectrum extends from 4, to
A+ 2¢ [in energy from E;/(1 + 2E,;/(myc?)) to E|]
and has the effect of modifying the symmetry of the
characteristic lines by adding a low energy tail to the
peaks (Fernandez, 1992).

Equations (54) to (57) describe the chain contri-
bution of one single line of wavelength A,. These
corrections must be calculated for every characteristic
line in the spectrum. The isotropy of the photoelectric
effect results in all of the scattering contributions
having azimuthal symmetry, i.e. the intensities are
constant along the border of a cone of aperture
9 =arccos(jn|) and uniform radius.

5.1.1.3. Some examples for single and composite
materials. The integrals in the above equations were
evaluated numerically with a Romberg algorithm
(Press et al., 1989) to compute the points in the
examples. The outer integrals (when applicable) were
calculated with a trapezoidal algorithm over meshes
of 20 intervals.

Second- and third-order photoeffect contributions,
for the Cr Ka line of one infinitely thick alloy
specimen, are displayed in Fig. 6 in units of the
first-order intensity of the line, showing the relative
contribution of some single terms of photoelectric
correction. The second-order is the most important
correction over all the range of E,. For this example
the second-order contribution is on the order of
30-60% of the primary beam. It can even exceed the
primary intensity under certain conditions. The third-
order can achieve a few percent as in the example,
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Fig. 6. Second- and third-order photoelectric effect contri-
butions to the characteristic line Cr Ka shown for the
ternary alloy Cr(25%)-Fe(60%)-Ni(15%). The multiple
scattering terms, calculated with transport theory, are plot-
ted in units of first-order intensity [equation (51)).
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Fig. 7. Components of the scattering interference to the Ka,

line (in units of the first-order intensity term for the charac-

teristic line) as a function of the incident beam energy are

plotted (a) Al, (b) Fe and (c) Zr. The incidence and take-off

directions are defined by 9,=45° 9 =135° ¢ =¢@,=0°
(from Fernandez, 1992).

while the fourth-order (not shown in the figure) is
normally below 1%.

The intensities contributed by scattering are
strongly dependent on E,. The total contribution to
the XRF intensity and the single scattering com-
ponents (relative to the first-order intensity of the
line) are plotted in Fig. 7(a)~(c) for the Ka, lines of
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Fig. 8. The enhancement of the Fe K, line in the iron and
iron oxide due to scattering. This illustrates that the lighter
matrix of the oxide favours the scattering (from Fernandez,
1992).

o 100 120

Al, Fe and Zr, and for right angle scattering with
9,=45° 8 =135°, @,=¢ =0. The energy of the
absorption edge marks the start point of the emission
in the graphs. The Rayleigh contribution prevails in
the low energy region. The Compton contributions
grow monotonically and can achieve an important
percent of the line. In practice, however, the coherent
corrections are important at low excitation energy
(higher photoelectric probability).

In respect to Fig. 7, there are no emissions for
energies lower than the K-absorption edge. The total
intensity contributed by scattering increases mono-
tonically with the excitation energy. The (P, R) inten-
sity dominates for low E,, except in a light element
like Al. The (C, P) intensity prevails for high E,. In
all the cases the total correction becomes greater
for increasing E,, and is more important in light
elements. Note that the scattering contribution in
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Fig. 9. The secondary XRF (P, P) and the scattering en-
hancement are the two components of the total second-
order intensity modifying the intensity of the characteristic
lines. Both components are plotted between 10 and 90 keV
for the Al Ku, line of a geological sample (SiO;Al,). The
scattering contribution, very important in this case, due to
the presence of oxygen, is practically the prevailing enhancer

(from Fernandez, 1992).
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those samples is almost always greater than 1%.
Similar plots for all the elements between Z = 11 and
42 have been recently published (Fernindez and
Molinari, 1992).
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Fig. 10. The (P, C) continuous intensity emitted by a pure
Zr sample (E,=20keV, 9,=45° 3 =135° ¢ =¢,=0°).
(a) The theoretical shape of the low energy tail [calculated
with equation (57)] is plotted for the Zr Ka, line. The
position of the discrete line is marked on the right side of
the continuous distribution. The height of the monochro-
matic line has no meaning. (b) The Ko doublet spectrum
calculated with the code SHAPE. The lines are represented
with gaussians having the natural line width, and are
overlapped to the low energy tails of both lines. (c) The K
emission spectrum modified by the response of a Si solid-
state detector of standard resolution (calculated with
SHAPE). From left to right, the escape Ka, and the
unresolved peaks Ko and KB. The shoulders on the left of
the peaks are produced by the continuous contributions
(P, C). These theoretical data agree with experimental data.
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A lighter matrix favours a greater scattering contri-
bution, as is shown in Fig. 8. Figure 9 displays the
enhancement to the Al Ka, line for a geological
specimen as a function of the energy. For E, greater
than 13 keV the total scattering intensity exceeds the
(P, P) correction. Clearly, any attempt to quantify
the matrix effects with only the photoelectric en-
hancement will fail in this sample.

In EDXREF all of the lines of the spectrum are
produced with the same source of excitation. Lines
from different edges will suffer different enhancement
by scattering. The greater the separation between E,
and the absorption edge energy, the greater the
scattering contribution on the corresponding line. A
polychromatic source, an X-ray tube for example,
will contribute to the scattering enhancement pre-
dominantly in the high energy portion of the spec-
trum, while the low energy part will contribute
through the pure photoeffect.

The (P, C) chain contributes one continuum spec-
trum which is exemplified in Fig. 10 for a single line
Kua,, for a doublet Ka and for two doublets Ko and
KB modified by the response of the detector. In the
two last cases, the height of the correction is com-
pared with that of the characteristic lines. For a given
target, the shape of this spectrum varies with E,, 3,
and 9 (Fernandez, 1992). The (P, C) spectrum over-
laps the low energy tail of the peak modifying the
symmetry of the line. For low and medium Z charac-
teristic lines of pure elements, the (P, C) spectrum is
too weak to be detected experimentally, although this
contribution becomes certainly more important in
lines from heavier elements, or from elements embed-
ded in light matrices. A good agreement between the
transport results [calculated with the computer code
SHAPE (Fernandez and Sumini, 1991)] and measure-
ments of elements Y to /in a matrix of starch powder
with Si(Li) detectors in four different experimental
set-ups was recently found (Kis-Varga and Vegh,
1993). This contribution produces the low energy
asymmetry of the peaks, well known by experimental
spectroscopists studying the response function of the
detectors (McNelles and Campbell, 1975; Jorch and
Campbell, 1977; Van Espen et al., 1980) but not
accepted as produced by multiple Compton scatter-
ing until recently (Campbell et al., 1989; He et al.,
1990; Fernandez, 1992; Kis-Varga and Vegh, 1993).
However, it is worth noting that the process of
modification of the line shape is intrinsic to the
emission spectrum, and not to the detector response.

5.1.2. The continuous background due to Compton
and Rayleigh effects

The energy distribution of once incoherently scat-
tered X- and y-ray photons, the Compton profile,
gives valuable information on the momentum distri-
bution of the electrons (Williams, 1977; Cooper,
1985; Schiilke, 1989). The technique is particularly
sensitive to the behaviour of the binding electrons
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and can be used to test their quantum-mechanical
description.

In measurements, multiply scattered photons con-
tribute a continuous spectrum which extends from
the excitation energy E, towards lower energies over-
lapping the profile. This interference must be stripped
off to obtain acceptable data of the profile. Many
authors attempted an analytical description of the
multiple scattering spectrum using three approaches:
the calculation of the scattered electric field
(Dumond, 1930; Williams et al., 1974), the inte-
gration of a probabilistic differential intensity (as
mentioned in Section 5.1) (Tanner and Epstein,
1976a, 1976b; Braun-Keller and Epstein, 1977a,
1977b), and the Boltzmann equation for radiative
transfer (Chandrasekhar, 1948; O’Rourke, 1952,
1953; Brockwell, 1965). Most of these studies were
performed with the first two methods. The approxi-
mations in the calculations—geometry, attenuation
and cross-sections—rendered these results qualitat-
ive. The few (and old) transport theory applications
on this subject were directed to finding general
solutions of the Boltzmann equation rather than
single terms of multiple scattering. Curiously, some
leading authors in this field considered, for this
reason, that transport theory is unable to separate the
multiple-order contributions (Halonen et al., 1977).
Since the mentioned analytical descriptions were in-
sufficient to correct for the Compton profiles
(Cooper, 1985; Halonen et al., 1977), the spectral
distribution of multiple events was calculated with
Monte Carlo simulation (Felsteiner et al., 1974;
Felsteiner and Pattison, 1975; Pitkanen et al., 1986).

However, a detailed analytical solution with re-
course either to the scalar transport equation
(Fernandez, 1991; Fernandez and Sumini, 1992) or

Compton effects, respectively (see Fig. 5). As the
degree of polarization can vary between 0 and 1
depending on the excitation energy and the scattering
angle, ¢ varies within the range of the trigonometric
function cosine in equation (50b) (ie. [—1,1])
weighted by the product of the two degrees of
polarization at the corresponding phase-space coor-
dinates for the interactions « and 4.

5.1.2.1. The Rayleigh and Compton peaks. The
first-order contributions due to one single scattering
in a pure element target are given by

I8 @, 2) = 604 — 1) 7 A(to, da. 1, 4o)
(1+(o- wo)z)Fz(Aoa o -ayZ), (58)
IR (@, ) =0(A + 4. (1 — @ - @y) — A1)o K (Ao + A

x(l1-o 'wo),lO)A('IO’ J'01 ',’)“0 )
+ i (1 —o ®)S(hy, © -0y, Z). (59)

Equations (58) and (59) give, respectively, the
intensities of the Rayleigh and Compton peaks. Since
we neglected the motion of the electrons, both peaks
are monochromatic for the source and geometry
assumed in our model.

5.1.2.2. Double scattering involving the Rayleigh
and Compton effects. There are four combinations
involving a double scattering with the Rayleigh
and the Compton effects: Rayleigh-Rayleigh,
Rayleigh—Compton, Compton—Rayleigh and
Compton—Compton. Details for the computations
can be found elsewhere (Fernandez, 1991).

5.1.2.2.1. Rayleigh-Rayleigh: This contribution is
calculated by substituting the Rayleigh kernel twice
into equation (50a), and setting

2
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to the vector transport equation (Fernandez, 1993a)
is possible, as has been recently demonstrated. In
what follows we shall summarize these calculations.

In order to calculate the correction factor ¥ defined
in Section 5.1 we shall use the degrees of polarization
defined by equations (34) and (40) for Rayleigh and

ko
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The dot products in equations (60a) and (60b) were
defined in equation (54), and ¥{* and ¥ /*) are given
by

fon/1 =12 F n’y/1—n}cos(g, — ¢)
(11— (@ o))" '
(60c)

(i NV/1=n"Fn'/1—n’cos(p — 97

(- (@  o®PF

cos P =

and

cos ¥
(60d)

The (R, R) intensity overlaps the coherent line of
equation (58).

5.1.2.2.2. Compton-Compton: The double scatter-
ing of the Compton effect is calculated by substituting
the Compton kernel twice in equation (50a)
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where
P = ’Io\/l" 2Fn \/1 — 3 cos(@o — @i*)
“ (1 — @ o)™ ’
(61¢c)
and
cos P _n/1-n"Fn'\/1-ncoslp —pi*)
* (- o™
(61d)
For convenience, we have introduced f;=max
(0, a"R_D)’ N1 =min(11 a”R+D)s ﬂ2= —min
0, ang + D), y,= —max(—1,anz—D) and the
quantities
P =g+ A.(1 — @y D), (61e)
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which are defined in terms of the following functions
of 5, @0, %, 1, @, A, and (the scattering angle) ©
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Fig. 11. Characteristic shape of the double scattering con-
tributions due to the combined influence of the Compton
and Rayleigh effects. Calculations are for Al excited with
59.54 keV (y line of #'Am) and for the geometry defined by
the incidence and take-off polar angles 9, =45°, § =135°
and azimuthal angles of ¢, = ¢ = 0 (from Fernandez, 1991).
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a Fnng

HEP +arccos( ), (61m)
oo Ja=nH(t—nd

i =21 + 0 — (@1 — @r). (61n)

The integration limits B; and y, cannot exceed the
values —1 and 1. The Heaviside functions in the
integrals are different from zero only when y,> §; and
indicate the validity range of every integral. The
(C, C) intensity is continuous, in contrast to the
preceding contribution. Its wavelength spectrum ex-
tends from A, + Ac(2 — wg) to Ag+ Ac(2 + wg) and
has the characteristic shape shown in Fig. 11.
Equation (61) is valid for wg #0, a?3 1 and n% # 1.
Limit cases for the special values of wg, nz and « can
be calculated similarly.

5.1.2.2.3. Rayleigh-Compton: The contribution of
Compton scattering of Rayleigh scattered photons is
obtained similarly to equation (61)
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where (&) is defined as in equation (61c) and ¥ &’
is given by

cos ¥ £
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B, =max(0,aqn — D), 1y =min(l,an+D), pB,=
—min(0, an + D), 7y,= —max(—1,an —D) and
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The meaning of the limits §; and 7, is as in equation
(61a). The (R, C) intensity is continuous and its
wavelength spectrum extends from 4, to 4, + 24¢ (in
energy from E, /(1 + 2E,/(myc?) to E,); therefore it
overlaps partially the (C, C) spectrum. The shape of
the (R, C) spectrum is shown in Fig. 11. The charac-
teristic maximum at the energy of the Compton line
broadens the profile.

5.1.2.2.4. Compton-Rayleigh: The Rayleigh scat-
tering of Compton scattered photons is obtained
similarly
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where P /*) is defined as in equation (61d) and ¥'(¥
is given by
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terms of
Ap— 4

i
(1-n1)(A—ad),

a=1+ (63d)

(63¢)



Intensity (a.u.)

0.20 0.25

0.30

A

Fig. 12. Analytical prediction (——) of a second-order

spectrum [(C, C) + (C, R) + (R, C))] compared to a 50,000

histories MC simulation (- --) under the same conditions

assumed in Sections 2 and 3. The target is Al excited with

59.54 keV at 9,=45°, 8 =135°, ¢,=¢ =0 (from Sartori
and Fernandez, 1992).

P =@, + arccos(—a+{-“’°—2> , (63f)
(=11 = n35)
and
PP =21+~ (9P —9,). (63

The meaning of the limits f;, and y, is as in the
preceding equation. The (C, R) intensity is continu-
ous and its wavelength spectrum extends from 4, to
Ao+ 2Ac (as in the preceding case). Therefore, it
overlaps partially the (C, C) and fully the (R, C)
spectra. The shape of the (C, R) spectrum is similar
but not equal to that of (R, C) as shown in Fig. 11.
5.1.2.3. Higher orders of scattering. The analytical
results of the scalar equation were checked with a
Monte Carlo computer simulation (Sartori and
Fernandez, 1992) reproducing the same physical
problem described in Section 3. The predicted MC
spectrum matches closely the analytical one, as is
shown in Fig. 12. There are three “peaks” well
differentiated, two of which belong to the extremes of
the (C, C) distribution, and the central one being the
peaked distribution due to the sum of the (C, R) plus
the (R, C) intensities whose maximum coincides with
the Compton peak energy. Depending on the target,
the excitation wavelength, and the geometry, the
three peaks can look like two, or like only one.
Since analytical expressions are still not available
for the third- and fourth-order components, they
were simulated with the mentioned Monte Carlo
program. Figure 13 displays the spectra for O, Al and
Cu. With regard to the figure, higher order scattering
becomes more important for light elements. These
spectra were normalized to unit intensity. Between
them their ratios are 1:20:40 for the Cu:Al:O.
Another aspect of quantification is the height of the
coherent line (near the right side in the plots) that
becomes more important for increasing Z. Third- and
fourth-order contributions cannot be neglected in low

J. E. FERNANDEZ et al.

Z targets. The results show that multiple Compton
scattering gives the most important contribution in
every case. These contributions are very important in
light elements, but can be safely neglected in the
medium Z range.

5.1.2.4. Some examples for pure targets. Under the
assumptions of this work, the first-order Compton
term gives a “broad” monochromatic line, whereas
the multiple-order terms with the Compton effect
contribute continuous spectra. Therefore, the terms
of the Neumann series of equation (15) can be
associated with different shapes in the spectrum,
having an almost identical experimental manifes-
tation. This fact supports the validity of the iterative
approach applied in Section 4.

In what follows, we shall summarize some proper-
ties characterizing the continuous spectra due to
double scattering of y-rays in pure element targets.
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Fig. 13. Two-, three- and four-collision total intensities
simulated with MC for three elements excited with the same
energy E, = 59.54 keV (from Sartori and Ferndndez, 1992).
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Fig. 14. The single and double scattering integrated intensi-
ties describe the overall contribution of the corresponding
order of scattering. These are plotted as a function of the
atomic number Z of the target for some representative
elements (H, O, Al, Fe, Zr), angles 9,=45°, 9=135°
@, = ¢ = 0°, and an excitation of 59.54 keV. The double-to-
single-intensity ratio 7®/J ", measuring the importance of
the continuous second order area [(C, C) + (C, R) + (R, C)]
relative to the intensity of the Compton peak, is plotted as
a solid line in the same graph.

Figure 14 shows the behaviour of the Compton
peak intensity, the total double scattering intensity
under the Compton peak, and its ratio as a function
of Z. The ratio vanishes for increasing Z, rendering
cleaner the Compton profile. For low Z, double
scattering can be high (>70% of the Compton peak
for H) and, therefore, higher orders of multiple
scattering should be calculated.

Figure 15 displays the single intensity terms due to
double scattering as a function of Z to show its
relative importance. The (C,C) term decreases
monotonically, whereas the mixed scattering terms,
(R, C) and (C, R), reach a maximum near Al and
decrease with lower slope than the chain (C, C). Near
Fe the three components contribute similar fractions
of the total. For elements lighter than Fe the (C, C)

10

Double scattering intensity (a.u.)

Fig. 15. Partial double scattering intensities as a function of
the atomic number Z. The (C, C), (C, R) and (R, C) con-
tinuous contributions are plotted as dashed line. The total
double scattering is plotted with a solid line. Angles are
9,=145° 8 =135° ¢,=¢ =0° and energy is 59.54 keV.

RPC 41-4/5—C
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Fig. 16. Total double scattering spectrum in Al as a func-
tion of the ratio (4 — A)/A, for several incidence energies E,.
The angles are 9, =45°, 8 =135°, gy =¢ =0°.

intensity dominates. For heavier elements the other
components become higher than the (C, C), and their
peaked shape produce a greater distortion of the
Compton profile. Note that the sum of the mixed
components reach first the (C, C) level near Ca.

The excitation wavelength A, (energy E,) deter-
mines the position of the intervals for both the
attenuation of the beam into the target and the next
scattering. Figure 16 shows how the integral intensity
increases with energy (E,) without modifying the
dispersion (but shifting the wavelength origin) of the
spectrum.

Although the shape of the spectrum is dependent
on angular coordinates 9, 9, and ¢ — ¢, (or the
scattering angle @), it is difficult to establish a
general behaviour beyond the following properties
(Fernandez, 1991). The angle © defines the width of
the continuous wavelength spectrum in the (C, C)
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Fig. 17. X-ray spectrum of H,O excited with the 59.54 keV
line. Geometry is 9, = 45°, 9 = 135°, @, = ¢ = 0°. The solid
line represents the theoretical estimation computed with the
code SHAPE (Fernindez and Sumini, 1991) and corrected
with the third and fourth order contributions calculated
with MC (Sartori and Fernandez, 1992). Circles denote
experimental data (courtesy of R. Sartori, FAMAF, Univer-
sity of Cordoba).
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Fig. 18. Experimental scattered photon spectrum of water excited with the 59.54 keV line of an *'Am
source, and with a scattering angle of 90°. (+) Experimental; ((J) theory: SHAPE data convoluted with
water Compton profile and detector response (from Tartari et al., 1993).

case. A change in 9, and 3 maintaining @ fixed varies
the relative contribution of the partial second-order
intensities to the double scattering spectrum, and
modifies the shape of the (C, C) intensity. Since @ is
constant, the wavelength limits of the spectra remain
unchanged. The spectrum becomes narrower for in-
creasing 3. The increase of @ produces the concen-
tration of the spectrum at the energy of the Compton
peak.

5.1.2.5. Comparison with experimental data. In
order to compare the theoretical results with exper-
imental data, a full spectrum of water was built by
joining both the monochromatic and the multiple
scattering continuous parts. The first- and second-
order contributions were calculated with the com-
puter program SHAPE (Fernandez and Sumini,
1991) using the analytical expressions described in
this work. The third- and fourth-order components
were determined with MC simulation. The mono-
chromatic peaks were artificially broadened with a
Gaussian shape to improve the fit of the whole
spectrum. The multiple scattering orders are not
retouched. The spectrum so obtained matches well
the experimental points as is shown in Fig. 17. The
dashed line identifies the multiple scattering contri-
bution. As can be appreciated, multiple scattering

+The Compton “peak” is really a sum of several distri-
butions, each of which results from its own interaction
(Hanson e al., 1988; Hanson and Gigante, 1989). The
effect of divergency indeed increases the FWHM of the
peak. However, for the scattering geometry of these
experiments and the collimators used, the broadening due
to this correction was much lower than the added widths
of the Compton profile plus the detector resolution.

introduces low deformation for this geometry. The
experimental set-up was a plastic tank filled with
water with a thin mylar window on one side. The
water was irradiated through the window using colli-
mated 2#'Am y-rays. Right angle scattered radiation
was collimated before reaching a Ge detector with
resolution 130eV@Mn Ka. The thickness of the
target was approximately 10 mean free paths.
Another test for water was performed by Tartari
et al. (1993) with a similar set-up. In this case the
Compton peakt was broadened using Compton
profiles calculated in the frame of the Impulse Ap-
proximation Theory (Biggs et al., 1975). The continu-
ous second-order spectrum was doubly convoluted
with the same profile used for the Compton peak to
simulate the effect of the profile on double scattering.
Figure 18 shows the agreement between this theoreti-
cal spectrum and the experimental spectrum.
5.1.2.6. Influence of polarization. We have already
seen that the scalar and the vector models predict the
same first-order component 7, and that second-order
intensities differ in a corrective term weighted by the
factor 4. Although ¢ admits a quite simple descrip-
tion [see equation (50b)], it affects the integrand of
one (or two) angular integral(s) and its effects cannot
be described straightforwardly. The influence of
polarization is better appreciated if one is shown
calculations of the same y-ray spectrum with the
scalar and the vector theories (Fernandez and
Molinari, 1993; Fernandez, 1993a). Figure 19 shows
several spectra from water built with the code
SHAPE by adding the contributions of the first two
orders of scattering. The spectra were calculated
assuming: a detector response without escape peak;
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Fig. 19. Total double-scattering spectra for water excited with E, = 60 keV as calculated with SHAPE.
The polar incidence and take-off angles are changed on the plane of scattering to obtain scattering angles
of (a) 178°, (b) 150°, (c) 120°, (d) 90° and (e) 60°. The plots show the spectra calculated with both the
vector (—) and scalar (- - -) equations. The extent of the correction increases with the scattering angle.

an excitation with the 59.54 keV line of #'Am; and
five different scattering angles ©. All of the spectra
were obtained by modifying the incidence and take-
off polar angles on the normal plane of scattering
(9o =0 and ¢ =0). The extent of the correction is
illustrated in Fig. 20, plots of the differences between
the spectra calculated with the scalar and the vector
solution after normalization to the scalar spectrum.
On the spectra of Fig. 19 the correction seems to be
quite small for all the scattering angles investigated.
However, Fig. 20 gives us more insight. The import-
ance of the correction increases and concentrates
within a narrow interval of energy as the scattering
angle increases. Therefore, the greater difference will

occur for scattering angles near 180°, precisely the
angles used for measuring Compton profiles. The
importance will be concentrated under the maximum
of the profile, modifying it asymmetrically. The cor-
rection shown in Fig. 20 for @ = 178° exceeds 10%
of the prediction with the scalar equation and is
placed under the center of the Compton peak.

The extent of the correction on two chains with
only the Rayleigh effect, i.e. for discrete peak and
second-order contributions, is shown in Fig. 21(a)
and (b). The correction exceeds the 10% of the
second-order intensity calculated with the scalar
equation, but since the second-order intensity term is
a small fraction of the first-order one [as can be seen



Fig. 20. The difference between the spectra calculated with
the scalar and vector equations (in units of the spectra
calculated with the scalar equation) renders the extent of the
correction in the energy range spanned by each spectrum.
For increasing scattering angles the correction becomes
more important and concentrates under the Compton peak.

in Fig. 21(a)], the correction is not important in this
case. However, the example is useful to analyse how
the state of polarization changes when unpolarized
source radiation undergoes first- and second-order

a
"
+
‘c 041
B
. (2) .
s T fme s
—== .€q
S o014 N 'Y (equal in both cases)
)
€
—
8 o001 3
2> 3
® ]
C
Lo.0001 §
c — T
= 0 30 60" "g0 1307 150 180
SCATTERING ANGLE (°)
1.12 5
b

1.10 3

31‘05

3

S 1.06

0.98 3t
0 30 60 90 120 150 180
SCATTERING ANGLE (°)
Fig. 21. First and second-order intensities of the pure
Rayleigh effect are shown for Al excited with 60 keV
photons calculated with both transport equations, scalar
and vector. Polar incidence and take-off angles are changed
in the same plane of scattering to give different scattering
angles (=7 — 9, 9= ¢ =0°). (a) Comparison between
the results of both equations. The once scattered intensity
(equal in both cases) is plotted for reference. All the
intensities are computed in units of the incoming intensity.
(b) Ratio of the second-order intensities calculated with
both equations as a function of the scattering angle.
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two collisions of the Rayleigh effect, as a function of the
scattering angle. The change in the degree of polarization is
due to the change of both the state of polarization and the

angular distribution of the photons undergoing the first and
the second scattering.

collisions. Figure 22 shows the degrees of polariz-
ation calculated with equation (Se) using only the
first-order Rayleigh intensity (first-order approxi-
mation), and first- plus second-order Rayleigh inten-
sities (second-order approximation). The fraction of
polarized radiation, after the first collision, coincides
with the degree of polarization of the interaction as
it is expected. It is worth noting that after two
collisions the beam is no more entirely polarized at
90°. This fact allows us to hypothesize that successive
collisions will degrade the degree of polarization,
making the high-order intensity terms more and more
close to the ones calculated with the scalar model.
The maximum degree of polarization occurs after one
scattering and is maximized into 90°. The reason for
this is that the “perpendicular” component has zero
probability for scattering into 90°. After this there
can only be an increase in the perpendicular com-
ponent. This increase come from multiple scattering
into 90° and into the “perpendicular” plane.

From these results, we conclude first that the
correction to the intensity component / is more
important for the continuous second-order spectrum
than for the Rayleigh peak. Second, the omission of
the corrective term derived with the vector transport
equation (with rigorous account of polarization) pro-
vides an underestimation of the spectrum principally
in the region under the Compton profile. In addition,
the vector equation is a useful tool to compute the
other Stokes components of the intensity, providing
information about the state of polarization of the
beam after each set of collisions. This is not possible
with the scalar equation.

6. EFFECT OF POLARIZATION ON THE MULTIPLE
SCATTERING INTENSITIES FROM POLARIZED
SOURCES

Two advantageous characteristics of the synchro-
tron X-ray beam, high intensity and good monochro-
maticity, have rendered the synchrotron light a very
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important source nowadays for a large number of
applications in radiation physics (Koch, 1983), re-
quiring a deeper knowledge of the multiple scattering
spectra produced by this source. As long as the
synchrotron X-ray photons are observed within the
orbit plane of the electrons, they are completely
linearly polarized having their polarization line coinci-
dent with the plane of the orbit. However, obser-
vation at a small angle out of this plane will detect
elliptically polarized radiation, which makes necessary
the use of the full solutions in equations (19) and (20).
As we have already seen in the preceding section, an
unpolarized beam scattered at right angles is also a
source of linearly polarized radiation. For simplicity,
we shall study the effects of linear and circular
polarization on the scattering of polarized X- and
y-rays. We prefer circularly polarized radiation be-
cause it is well differentiated from the linear polariz
ation and reduces the number of Stokes parameters
necessary to describe the state of polarization of

elliptical polarization. This choice is sufficient to
analyse the transport of photons produced with
natural sources of polarized radiation (Fagg and
Hanna, 1959; McMaster, 1961) as much as with the
mentioned artificial sources.
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this system, by the source function (see Table 2).

1
cos 2y
sin 2y

0
Furthermore, the interaction processes considered in
Section 4 (symbolized as a generic process <) have
matrix kernels which can be written (in the Stokes
system) as:

K9, 4, 0’, )=k, (0, 4, 0", 1)

FNw, A)=1,0(® —ay) (A — 4) . (64)

1 2, 0 0
ay ay 0 0
65
0 0 4, o ©9
0 0 0 ay

The scalar kernel k, (@, 4, ®’, ") has the same mean-
ing as in equation (46), i.e. it depends on the average
polarization state. Primed symbols in equation (65a)
identify the coefficients in the Stokes system, which
must be distinguished from the unprimed (system L)
coefficients found in equation (46) and in section 4.

A straightforward kernel transformation from the
system L (unprimed) to the system S (primed) is
performed according to the relationship

1 4 0 0 ] 1
@y ayp 0 0 Nan+ap+ay+an) fan—aptan—an) 0 0
0 0 af O Nan+an—ay—an) Han—ap—an+tayp) 0 0 (65b)
0 0 0 ai 0 0 ay 0
0 0 0

6.1. Multiple Scattering Intensities for Linearly
Polarized Sources

The polarization states corresponding to the sev-
eral multiple-scattering contributions to the backscat-
tered intensity were described, in Section 3, for
arbitrary source polarization and interactions. In this
section we shall compute the intensity terms for the

Substitution of equations (64) and (65a) in the
solution of the transport equation gives the following
relationship for the first-order intensity vector corre-
sponding to the single collision chain

(‘%a AO)_E’ ((D, '1)

involving the generic interaction z

)Xo, 1) = A1, Ao, 1, ) k (@, 4, @5, &)

14 aj,cos2(P’ +y)
cos 2¥ (a5, + a5, cos 2(P’ + x)] — sin 2% a3, sin 2(¥7 + )
sin 2% [a3; + a3, cos 2(¥P’ + x)] + cos 2¥ a3, sin 2(¥’ + x)

, (66)
0

special case of a linearly polarized source. For
simplicity, we shall describe the transport in the
system S of Stokes. An arbitrarily linearly polarized
source of monochromatic and collimated y-rays of I,
photons cm~2s~! is represented mathematically, in

where ¥ and ¥’ are defined as in equations (11c)
and (11d), with @, in place of ®’. As in equation
(48) we can represent the first-order intensity vector
I)® decomposed into two fractional beams, the



610

unpolarized and the polarized fractions
IO = IO 4 [Hr,

with the fractions given by the relationships

I = A(ng, 29, 1, Ak, (@, 4, 03y, 49)

(67a)

1
x (1 + ai;cos (¥’ + 1))(1 — P.,) g , (67b)
‘and 0
ISP = A(no, Ao, 1, Ak, (@, 4, @y, A)
1
x (1 + ai,cos 2P’ + )P, ':’j ;g . (670)
0

P, represents the degree of polarization of the inter-
action « for a linearly polarized source. By equation
(5e), it is given as

Pa(w, A-’ @, IO)

_ OB+ 1 4 1y

5P

_ (@51 + a3 cos 2(¥’ + x)F + 233 sin 2(P’ + )P
14+ aj,cos2(¥’' +yx)

(67d)

The polarized fraction (67c) represents a linearly
polarized scattered beam whose polarization line
forms an angle ¢ with the scattering plane. The angle
¢ is defined analogously to x in equation (3b).

The component I of the first-order intensity, repre-
senting the intensity collected by a polarization insen-
sitive detector, is the first component of the intensity
vector (66),

[8,))5.5') (0), '1) = A(”Os ;'Os "9 j.)ka((l), A" wO’ j'0)

x (1+ ajycos 2(P’ +7)). (68)

Analogously the second-order intensity due to the
collision chain

(@9, 4) = (@', A) — (@, 1)

involving two generic interactions < and £ is given
by
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which compared with the expression for the same
intensity term deduced with the unpolarized source
(see Section 5.1), differs only in the expression of the
corrective factor ¥4.,(w, 4, ', A, @y, 4y, ), which
depend explicitly on the angle x, and is defined in
terms of the primed matrix coefficients as

Gu(@,4,0°, 0", @y, 4, )
=a1,¢0s2(¥Y, + 1)+ a3 61,c0s (¥, + P})
+30l(an+ a3) cos AP, + ¥, + ¥+ %)
+(a —ayp)os (¥, — ¥, — ¥+ x)], (69b)

where ¥, ¥ and ¥ are angles of spherical triangles
for the interactions = and ¢, respectively, similar as
those shown in Figure 2 for one single interaction.
These angles are defined, respectively, by equations
(50c), (50d) and by the relationship

cos 97 =TV 1=15—10y/1— 17 cos(o’ — po)
. 0~ 0" '

(69c¢)

The expressions for the components Q and U are
substantially more complicated and will not be in-
cluded in this article. We get also the component V'
of the intensity

129 (w, 1) =0, (69d)

meaning that the polarized fraction remains linearly
polarized after the second scattering, i.e. no elliptical
component is created as a sequence of the scatter-
ing process when it is not initially present in the
source.

Some properties of the one- and two-collisions
intensities, equations (68) and (69a), are similar to the
ones already mentioned in Section $ for the unpolar-
ized source. Firstly, it remains, as before, a polarized
fraction of the beam after the first collision. This
fraction is dominant (see Section 6.1.3), i.e. the beam
remains almost completely polarized after the scatter-
ing, in contrast with what occurs with the unpolarized
source, where a full polarization state corresponds
only to right angle scattering. Secondly, the angle
defining the position of the polarization line is differ-
ent after one and two collisions. This confirms what
we already suggested in Section 5.1, i.e. that it is
possible to separate the contribitions from a different
number of collisions by filtering the beam with a
polarizer before the detector.

Iff-’ii’(w.1)=A(no,%,n,i)Iwu'f do’ L
0 an In’]

(1 +sgnn’) k@, 4, @', Ak, (@', 4, 0, Ao) (1 + oy (@, 4, @', ', @, &y, X))

X 2

+ (1 —sgnn’) k(@ 4, o', M)k, (@, 1, @9, ) (1 + G2y (@, 4, @', X', oy, Ay, 1))

’

I’
_+__/
nl " In’l

(69a)

2

’
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The detected intensity (sum of components I for
different numbers of collisions) will be object of a
more detailed analysis for the interactions of interest.
However, we can make some general observations
about it. Comparing equations (68) and (69a) with
equations (47a) and (50a) it is easily seen that a
linearly polarized source brings the effects of polariz-
ation to the most intense first-order intensity terms,
i.e. to the peaks. Therefore, a scalar model with the
average polarization kernel is not more valid as a
first-order approximation of the I component. It is
apparent from equation (68) that, for any process, the
first-order intensity is different from the scalar inten-
sity (47a) (unless all the matrix coefficients are null)
because of the additional term that depends on the
scattering geometry and the orientation of the source
polarization line. As we shall see below, the first-
order intensity could also be obtained by replacing
the averaged kernel with an appropriated scalar
(polarization dependent) kernel. On the other hand,
the second-order intensity depends on the extent of
the correction ¥’ [different from the factor ¥ in
equation (50a)], which depends on the matrix co-
efficients 2’ and #’, the scattering geometries of both
interactions, and the angle y, as was described in
equation (69b).

6.1.1. Characteristic lines

Assuming the photoelectric effect is not a polariz-
ation dependent process we obtain, from equation
(67d), the polarization degree

Pp(o, A, @, 49) =0. (70a)

Thus, the corresponding first-order intensity term can
be written as

I(w, 4)

= A (”0’ 2’0: "’ A)kl'(w, )'; wo, AO) ’ (70b)

(=

0

which is analogous to the expression obtained
with the unpolarized source, i.e. the photoelectric
effect completely depolarizes the beam, producing
completely unpolarized radiation after the first col-
lision.

The photoelectric effect has this behaviour because
the coefficients of the polarization matrix in the
Stokes system are null, i.e.
a3y = a4 =0 in equation (65a), as can be easily
shown from equations (30) and (65b). This implies
that all the intensity terms containing pure photoelec-
tric effect interactions will maintain the expressions
obtained in Section 5.1.1.1 for the unpolarized
source. This property can be extended to some of the
second-order intensity terms containing other scatter-
ing processes besides the photoelectric effect, as long
as the photoelectric effect remains the first interaction
in the chain. As can be verified by inspecting the

- - -
ap=ay=an=
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coefficients in equation (69b), we get ¥, =0 for any
scattering interaction 4. However, this condition is
not fulfilled if the photon undergoes a Compton or
Rayleigh scattering before the photoelectric effect.
For these cases we must consider the corresponding
factor 9¢p or Frp (%cp # F2e # 0) in equation (69a),
modifying the intensity terms given earlier by
equations (53) and (56). It is worth remembering that
the scattering contributions are always present in an
important proportion in intensity measurements of
characteristic lines, mainly when a light element is a
major component of the target. They amount (all
added), at working energies, to typical values of
5-10% of the unmodified line for pure element
targets or 10-50% for trace elements in light
matrices, that makes important a correct estimate of
this enhancement. As we mentioned, only two of the
four corrective terms are modified by using a linearly
polarized source, and therefore, it is not possible to
reduce all the multiple scattering contributions by
making recourse to polarization. We should note that
the continuous (P, C) term responsible for the
modification of the shape of the line is not changed
by this source, as well as the (P, R) term, which is the
dominant term of the correction for high and medium
Z pure targets (see Section 5.1.1 for a discussion on
these contributions).

The multiple scattering effects on the characteristic
lines modifying the results already reported in Section
5, in particular the intensity terms (R, P) and (C, P)
are summarized in the following subsections.

6.1.1.1. Chains involving the pure photoelectric
effect. As we have seen, there are no changes for the
intensity terms containing only photoelectric effect
interactions. Therefore, the first- and second-order
intensities are described by equations (51) and (52), as
well as the third- and fourth-order ones which
are coincident with those reported by Fernandez
(Ferniandez, 1989; Fernandez and Molinari, 1990).

6.1.1.2. Chains of mixed interactions involving the
photoelectric effect and Rayleigh or Compton scatter-
ing. The four contributions involving the possible
combinations of one scattering process (Rayleigh or
Compton) and one photoelectric effect were already
described in Section 5.1.1.2. Two of them describe the
intensity contributed by coherently and incoherently
scattered photons that, absorbed by photoelectric
effect, result in XRF emission. The other two corre-
spond to XRF radiation Rayleigh and Compton
scattered towards the detector.

Due to the vanishing of the photoelectric effect
matrix coefficients, two scattering contributions to
the second-order intensity remain unmodified. They
are the (P, R) and (P, C) terms which continue to be
described, respectively, by equations (55) and (57).
The remaining two intensity terms, (R, P) and (C, P),
change because the polarized source modifies the
angular distribution of the radiation scattered in the
first collision, which successively undergoes absorp-
tion by the photoelectric effect. The expressions for
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the intensities of these terms, are given in the follow-
ing sections.

6.1.1.2.1. Rayleigh-photoelectric: The XRF inten-
sity contributed by Rayleigh photons produced in the
first collision of the beam is obtained by replacing the
kernels £, and £, by £, and £, respectively, and %%,
in equation (69a)

I8 (@, 4) = 3(A — li)W%

x 0y, (Ao)[1 — #(4o— 4,)]
0 0

Lo
Inl

x[1 = (1= (" of))cos’(¥ [ + x)]

f J‘ dn’ Fi(3y, &’ F(y, 0" - o, Z)

o l‘o
|'Io|
x[1=(1=(@  ofPcos (P + b, (71a)
where ¥(*) is given by
cos P'®) = *n'/1=n}—ne/1—n"cos ¢’
¢ (1 — (0" @f®)P)? )
(71b)

and o, - o$*) was defined in equation (54).

Note that the factor 4x in the denominator of the
right hand side of equation (53) has changed to 2n
in equation (71a). Furthermore, the angular factor
between brackets, depending explicitly on yx, now
replaces the factor 1+ (0’ @{*’)* in the average
polarization kernel. Note also that the new factor is
the same that we find in the first-order Rayleigh
intensity calculated from equation (68) (see Section
6.1.2.1). It means that the angular distribution of the
Rayleigh scattered intensity undergoing the photo-
electric effect was modified by the source polariz-
ation.

6.1.1.2.2. Compton—photoelectric: The intensity
term contributes by XRF due to photoelectric ab-
sorption of incoherently scattered source photons is
given by the substitution of £., £p, and 9., in
equation (69a)

— A("O’ '10, ", }-1)1
5, @,4) =84 — 4) 2R
Ao+ 24,
x j di’Q, (A)S (g, a’', Z)[1 — (A" — 4,)]
4

f”‘ﬂ‘w(ﬂ;—ai)
a0 W
I
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KA 2, P, 1)
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< (42, Y27 1) . ()
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ﬂo A A =4
K(V\ o, 18, ) =242 _ 2
2 Ac
A’I
x<2— 7 lo)cos’(‘l’;(*)+ 1), (72b)
C
Y3®) is defined by the relationship
+n’' —nea’
(+) =
Ty ™

and the remaining symbols are a’ =1+ (4 — 4')/Ac,
A= /(1-n})(A—a?), a; = max(0, a’n — A),
B1=min(l,a’ny+ A’), a5 = —min(0, a’ny+ A’), and
B3= —max(—1,a’n,— A’).

The factor K(A', 4, P2%, x), which depends
explicitly on y now replaces the factor K(4’, 4;) of the
average polarization kernel. The factor K is the same
as that we find for the first-order Compton intensity
deduced from equation (68) (see Section 6.1.2.1). The
difference between K and Ky is due to the source
polarization which modifies the angular distribution
of the Compton scattered photons undergoing a
collision of the photoelectric effect.

6.1.2. The continuous background due to Compton and
Rayleigh effects

Many attempts have been performed in the past to
evaluate the influence of the multiple scattering due
to Compton and Rayleigh effects upon excitation
with a polarized source, as it is apparent in the
exhaustive annotated bibliography by Hubbell
(1992). A review of the literature cited shows the
greater effort concentrated between the middle 40’s
and the middle 50’s to state the mathematical basis of
polarized photons transport and the correct angular
dependence in the polarization matrices. The
equations of transfer allowing properly for the polar-
ization of the scattered radiation were first formu-
lated by Chandrasekhar (1946a, 1946b, 1947, 1950)
for Rayleigh scattering (without including form fac-
tors), and constitute the foundations for the approach
used in this article. After these seminal works, the
study on polarization effects in multiple scattering of
X- and y-ray photons with the Compton effect was
continued by Spencer and Wolff (1953). The vector
transport approach and the use of polarization
matrices were reviewed, respectively, by Fano et al.
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(1959) and McMaster (1961) with special regard to
the Stokes formulation. Other review articles, regard-
ing theoretical or experimental aspects of photon
polarization, were due to Fagg and Hanna (1959),
Cole (1963) and Olsen (1968). During the next
decade, from the middle 50s to the middle 60s, the
efforts were concentrated on making experimental
checks of the theory, and theoretical adjustments of
the polarization matrices. After the middle 60s the
interest waned, except for some applications on
X-ray diffraction, until a recent revival induced by
the availability of the synchrotron light as a
source.

In these works, Compton and Rayleigh effects
received a separated treatment, i.e. either Rayleigh or
Compton collisions were considered. There are no
known references to chains of mixed interactions of
both effects, Compton and Rayleigh. Form factors
and scattering functions have been ignored in the
scarce theoretical estimations, offering low accuracy
for absolute estimations. Most of the theoretical
work has been devoted to determining the com-
ponents of the Rayleigh and Compton polarization
matrices, used in turn to estimate crudely the
importance of up to two scattering collisions in
infinite media and the parallel-to-perpendicular com-
ponent ratio of the scattered beam intensity. No
transport calculations, other than the foundational
references for this article, were performed. There-
fore, the mentioned estimations of intensity have
never included the attenuation in the volume of the
target.

In what follows, we shall use the analytical solution
of the vector transport equation to obtain expressions
of the scattered intensities using accurate Rayleigh
and Compton cross sections and including attenu-
ation effects.

6.1.2.1. The Rayleigh and Compton peaks.

6.1.2.1.1. Rayleigh peak: From equation (67d)
we get the degree of polarization for the Rayleigh
effect

PR(w, }»,wo, ;'0)= L (733.)

Equation (73a) shows that Rayleigh scattering of
linearly polarized source photons produce only lin-
early polarized photons. No unpolarized photons are
emitted, and therefore, the first-order intensity vector
for the Rayleigh peak contains exclusively the polar-
ized fraction

1RO = 24 (10, 40,1, 1)12_(‘”_’)“_’"’0’_}"’)

1+cos’@
1
i A cos 2&
x (1 —sin’ @ cos*(¥Y’ + x)) sin2¢ | (73b)
0
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© represents the scattering angle, and the polariz-
ation angle ¢ of the scattered beam is defined by any
one of the relationships

_cos O cos(¥’ + y)cos ¥ —sin(¥’ + )sin ¥

0s¢ 1 —sin? @ cos (¥’ + )

(73¢c)

siné = cos O cos(P’ + x)sin ¥ +sin(¥’ + x)cos ¥
- 1—sin2 @ cos’ (¥’ + ) ’

(73d)

The I component of equation (73b) predicts the
detected first-order intensity for the Rayleigh peak

IR (o, 1)
' =2%5(A — ho)A (Mo, 0> 11, 40)

x FY 1y, 0 - @y, Z)

x (1 —sin? @ cos (P’ + x)). (73¢)
Note that ¥’ in equation (73e) is defined by
—_—n2_ Y
cos @ 1= b=t /T=nPcose .0

sin @

The angular part of equation (73e) agrees with the
well known result (Heitler, 1936) relating the intensity
with the scattering angle and with the angle between
the polarization line of the incident beam and the
propagation direction of the scattered beam.

scattered beam

Fig. 23. A linearly polarized incident beam with the electric

field lying on the plane parallel (perpendicular) to the

scattering plane gives minimum (maximum) first-order in-

tensities for 90° Rayleigh and Compton scattering. In the

figure we assume that both directions, incidence and take-
off, lie in the x—z plane normal to the target.
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Fig. 24. The degrees of polarization and the first-order
intensity for the Compton and Rayleigh effects, for a
linearly polarized incident beam, are shown as functions of
the incident energy, the scattering angle and the orientation
of the polarization line. The Rayleigh degree is constant. In
contrast, the Compton degree depends on the above three
variables and is responsible for the gradual depolarization
of the beam. (a) The Rayleigh and Compton degrees as a
function of the scattering angle for several energies of the
incident beam. The depolarization of the beam is minimum
(null) for forward scattering, and maximum for right angle
scattering. The polarization line of the incident beam is
assumed parallel to the scattering plane. (b) The Compton
degree as a function of the scattering angle for some
orientations of the polarization line. The depolarization is
minimum for parallel orientation (y = 0) and maximum for
perpendicular orientation (x ==/2). The energy of the
incident beam is 1 MeV. (c) The unpolarized and polarized
fractions of the first-order Compton intensity as a function
of the scattering angle © and the polarization of the incident
beam, for carbon excited with 100 keV X-rays.
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For the special case of right angle scattering in the
x—-z plane we get sin? @ =1, ¢ =0, ¥’ =1, and the
Rayleigh peak intensity becomes

Ié%f) IO-uI2 = 2%6(}‘ - 3-0)14(’10» Aﬂa n, )»o)

x FX(4 0, Z)sin’ y, (73g)
with # satisfying the relationship

n=—1-nd" (73h)
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Fig. 25. Rayleigh (- - -) and Compton (——) peak intensi-
ties as a function of the polar angle of incidence for right
angle scattering in the x—z plane of 50 keV photons, and for
three orientations of the incident polarization line. (a)
Parallel to the scattering plane (x =0). The first-order
Rayleigh intensity is null. (b) At 45° to the scattering plane
(x =m/4). (c) Normal to the scattering plane (x = n/2).
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The intensity (73g) is minimum (null) for an incident
beam with its polarization line parallel to the scatter-
ing plane (x =0), and maximum for a polarization
line perpendicular to the sattering plane (y = n/2), as
it is shown in Fig. 23. Figure 25 displays the first-
order intensity (73g) for some pure elements and
orientations of the incident polarization line at fixed
50.keV excitation energy and 90° scattering angle, as
a function of the polar angle 9, of incidence. The
Rayleigh peak intensity increases with 3, due to the
variation of the paths corresponding to the incidence
and take-off beams which modify the attenuation into
the target. Complementary properties for the parallel
and perpendicular components of the Rayleigh polar-
ized cross-sections (i.e. without attenuation) for 90°
scattering were discussed by Hanson (1986a, 1986b,
1986¢).

6.1.2.1.2. Compton peak: From equation (67d) we
obtain the degree of polarization for the Compton
effect as

1—bQ2—b)cos (¥’ +x)

a/2 —b2—b)cos’ (¥’ +y)’ (742)

PC((D’ 4, @y, }‘0) =

where a(A, 4y) = A/ + 4/A, b(A, Ap) = (4 — Ap)/Ac
and Y’'(w,w,) is defined as in equation (73f).
Equation (74a) shows that Compton scattering of
linearly polarized source photons produces both
linearly polarized and unpolarized photons. This
depolarization effect was first predicted by Klein
and Nishina (1929) using the Dirac’s relativistic
electron theory. For A — 4, and for i,— oo, the
degree of polarization (74a) approximates the
degree for the Rayleigh effect as it is shown in
Fig. 24(a). It is apparent that the Compton degree
becomes more and more different from the Rayleigh
degree for increasing incident energy and increas-
ing scattering angle. The greater the departure
from 1, the higher the depolarization due to the
Compton scattering. The unpolarized component is
zero in the forward direction (@ =0) and maxi-
mum in the perpendicular direction (@ = n/2), from
which it goes to an intermediate value in the back-
ward direction (@ ==). Figure 24(b) shows the
effect of changing the orientation of the polariz-
ation line on the Compton degree. For a given
incident energy, the parallel orientation gives the
minimum depolarization in the perpendicular direc-
tion (@ =mn/2), while orientations closer to the
perpendicular position favours the depolarization. In
the forward (© =0) and backward (@ = =) direc-
tions, the degree of polarization is totally indepen-
dent of the polarization of the incident X-rays.
Figure 24(c) shows the unpolarized and polarized
fractions of the first-order Compton intensity as a
function of the scattering angle ©. The unpolarized
fraction is independent of the orientation of the
incident polarization. The polarized fraction changes
from the upper curve (x =n/2) to the lower curve
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(x =0) having a zero for ® ==n/2. Some of these
characteristics were already noted by Hanson [see
for instance Figs 15, 17 and 19 in Hanson (1988a)]
with a different approach based on the study of
the depolarization terms appearing in angularly
integrated cross-sections for narrow detectors.

Therefore, the first-order intensity vector for the
Compton peak contains the polarized and unpolar-
ized fractions

ke(o, A, @y, 4g)
|(g,,,= C 0
IE‘;) 2A("0! '10’ n, A) KKN(L )»0)
1
x <%)z @pR-1) g , (74b)
0
and
kc(o, A, @, Ay)
DSy — C 0
IE& 2A("0! AO’ n, j') KKN(;-’ }'0)
1
2 2
x(%) (1= b2 —b)cos’ (¥’ + 1)) :’: zg ,
0
(74c)

where b(2 —b) =sin’ ©®, with @ representing the
scattering angle, and the polarization angle £ of the
polarized beam is defined by any of the following
relationships

(1 —b)cos(¥P’ + x)cos ¥ —sin(¥’ + x)sin ¥

cos ¢ = 1—b2—b)cos’ (¥’ +y) ’
(74d)

., (1 —=>b)cos(¥’ + x)sin ¥ +sin(¥’ + y)cos ¥
sin ¢ = 1— 52— b)cosi (P’ + ) ’
(74e)

The I component of the intensity vector [given by
the addition of equations (73b) and (73c)] predicts
the detected first-order intensity for the Compton

peak

1P 1) =20 (%) S0 -1, 2

X 0(Ac(1 —@ @)+ 4 — 4)A(no, 4951, 4)
x (@2 — b(2 — b)cos (P’ + 1)). (74f)

For the special case of right angle scattering in the
x —z plane we get b(2—b)=sin’@ =1 (ie. b=1
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and A =4+ 4¢), ¢ =0, ¥’ =m, and the Compton
peak intensity becomes

I?cz)(,& |e-u/2 =200(Ac+ 4 —4)
X A(nO’ }'0’ n, }'0+ j'C)S(A'O’ 0’ Z)

Ao V{1 A+ Ac o
x(lo+lc> {5< T +Ao+lc)—cos2x},
(74g)

with #n given by equation (73h). The intensity is
minimum if the incident beam has its polarization
line parallel to the scattering plane (xy =0), and
maximum if the polarization line is perpendicular to
the scattering plane (y = = /2), as is shown in Fig. 23.
In contrast with the Rayleigh peak, the Compton
peak intensity does not vanish for y =0 [see
Fig. 25(a)]. Figure 25 displays the first-order intensity
(74g) for some pure elements and orientations of
the incident polarization line at a fixed 50keV
excitation energy and 90° scattering angle, as a
function of the polar angle 3, of incidence. At this
energy, the Compton peak intensity is always greater
than the Rayleigh one. Both intensities increase if the
angle 9, increases, because of the variation of the
attenuation paths into the target corresponding to
the incidence and take-off beams. The Rayleigh/
Compton intensity ratio for each element [sometimes
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used as a measure of the average density of multi
component targets (see e.g. Cesareo et al., 1992)] is
modified by the orientation of the polarization line of
the incident beam.

Complementary properties regarding the parallel
and perpendicular components of the Compton
polarized cross-sections (i.e. without including
attenuation effects) for 90° scattering were discussed
by Hanson (1986a, 1986b, 1986c).

6.1.2.2. Chains of double scattering involving the
Rayleigh and Compton effects. In order to calculate
the correction factor ¥’ defined in Section 6.1 for
the second-order terms we use the Rayleigh and
Compton matrices which result from applying the
transformation (65b) to equations (34) and (40),
respectively. ¢’ varies according to the range of the
cosine trigonometric functions in equation (69b) (i.e.
[—1, 1]) weighted by some simple factors involving
the matrix coefficients «; and 4;;, corresponding to
the interactions « and 4. The expressions for the four
combinations involving a double scattering with
the Rayleigh and the Compton effects: Rayleigh—
Rayleigh, Rayleigh-Compton, Compton—Rayleigh
and Compton—Compton are given below. Details
for the computations can be found elsewhere
(Fernandez, 1993c).

6.1.2.2.1. Rayleigh-Rayleigh: This contribution is
calculated by substituting the Rayleigh kernel twice
into equation (69a), and setting

2
I8, @, 4 1) =3 — &) (%) ACt0r Ao, 1, )

dn’ (1 + (@ - 0MP) (1 + (@ of"))(1 + 95 (@, 4 o', X', @, 4, 1))

. 5

X FY(Jg, 0" - @M, Z)F(}y, 00" - of"), Z)

uo+@
I

la w’, )-” @, j'(h X))

J‘ J"dn 1+ @ 0P+ (@  of(1 + 95 (o,

X Fi(Ay, @ - @7, Z)F(Jg, 0" - 0§, Z)}

where
G, A0, A, @y, Ay, X)

(0" o) -1
T (0 o) +1

(cos 2PD + )+

2(@ 0@y +1

1 (@ 0Py -1 {(w’ ‘of) + 1)

(@ - o) — 1)
o o)} +1

(0 o)} +1

cos2(P/ D - D 4 x)}

Ho +I‘o
|'lo|
(75a)
()2 1
Ew, w(i);z 1% AP+ ‘I’;‘*’))
cos2(W! B 4+ PB4 P 4 y)
(75b)
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p&® pid) and PP are given by equations (60c), 4 —/Tj,*)<). — AP 2)
(60d) and (71b). The dot products are defined as 1 Ac Ac
in equation (54). The (R, R) intensity overlaps the 377 IS,*’ A=D1 -1
coherent line (73e). mt Tt T 2
6.1.2.2.2. Compton—Compton: The double scatter-
ing of the Compton effect is calculated by substituting T — 20\2
the Compton kernel twice in equation (50a): 2- e )
x 7 21) @ ® )
2)(S) Tk % —
Ii&q, ((0, '1’ X) = Ric A("Os AO n, l) E -+ A’C ( A'C )
y f dn’ 0, ) o8 2(”**) MG
w1 SA— DA 1R — @ —n'ne) (fi*;— %)2
+ C
2 Ken(h, Iw)K A, &) b HE HE—d(IP—d
x Y, = % T T
& () oo e c
+ ’
Inl -~ n

x S, @ - 0P, Z)S(Ay, 0y 0, Z , ,
i IS (o, @, ) xcos 2P/ —Pd — g 4 y) | . (76b)

x (1 + 98 (@, 4, 0", 2, @4, A9, 1))

J = 10:—P) Y and P P are given by equations (61c) and
n A+)
M JA=nD—1%)— @ +n1e) (61d), ¥ by

T cos P ()
2 Kev(A A K (), Ao)
o ~aD) _ 0 /T = o /T— 1" cos(ps — 05
|’Io| n’ (1 — (@ 0y P))'? ’
x ST, 0 - 0, 2)S (o, @y 0(°, Z) (769
the dot products by equations (61f) and (61g), and
A by equation (6le). For convenience, we

x(1+%8 (@, 4, @', 4,0y, 24,%))p,  (76a) have introduced B, =max(0,onz— D), 7, =min

. (1,ang+ D), B,= —min(0, angz+ D), 7y,= —max

where (=1, ang — D). The quantities wg, a, 7z, D, ¢+ and
@ ;®) were already defined by equations (61h-n). The

G (0,4, 0, A, @y, A9, 1) integration limits §; and y; cannot exceed the values

—1 and 1. The Heaviside functions in the integrals

B — 4 (X = 4, are different from zero only when y; > B, and indicate

e ( e -2 the validity range of every integral. The wavelength

)o T IO ( O 7 > spectrum of the (C, C) intensity term ex.tends frorp
=+ -2 Ao+ 4.2 — wg) to A9+ Ac(2 + wy). Equation (76a) is
I;‘_ 4o Ac Ac valid for wg # 0, «2 # 1 and #% # 1. Limiting cases for
the special values of wg, 7z and a can be calculated
similarly.
6.1.2.2.3. Rayleigh-Compton: The contribution of
Compton scattering of Rayleigh scattered photons is
obtained similarly to equation (76)

x | cos2(PE) +y)

A—Iiﬂ(A—Ii*’_z) I38,@ 40 =5 A(no,zo n,4)
b e
2 _1 A— i:t) - i:t)_ Ken(4, S(Ay, a, Z '[ v
5 +T< = 2) X Ken(4, 20)S(%0, 8, Z)< |5, 1 ﬁ"L%
%0, —B)

X
JA=nDA=n)—(a—nn)
xcos 2(PE + Py \
x Y, (1+ (@ @i VP)F(hy, 0 0P, Z)
k=1
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x(1 4+ 938 (@, 4, @', 2, @, 49, X))

.\ Jdi I U= By)
no N b /(=0 (A—n)—(@+n"n)
Inol ~ n’

2
x ¥, (1+ (@ @ P)F(hg, 0y - 07, Z)
k=1
x(1+ 955 (@, 4, @', A, @0, 40, X))p > (T72)

where
(@ 0} P)? — 1

gD (0,4 0", N, 0y, Ao, X)_((,,—,,,Tt)jz_,__l
0 k

x [cos 2P + )

A—AO(A—AO >
-2

N e \ Ac

A A A—JofA—4
z’“I*T( Te ‘2>

xcos (PP + P L )]

(2
1 Ac
4-
20 A A=A
Z'FI . ( 2)

(@ @) + 1)
@, 0 F +1

xcos AP + P + PEE + 1)

(@ @) — 17
@ oY +1

X cos 2P — P — Py x)} , (77b)

), it and PP are defined by equations (61c),
(76c) and (62c), P, =max(0,an —D), y,=mi
(l’a” +D)’ ﬂ2= —min(O,ar; +D), Y2 = —max
(—1,an — D) and o, o *)—as in equation (61f)—
are defined in terms of a, D, ¢ and ¢ 3*, defined
by equations (62d—g). The meaning of the hrmts B
and y, is as in equation (76a). The (R, C) intensity is
continuous and its wavelength spectrum extends from
Ay t0 Ag+2Ac (in energy from Ey/(1 + 2E,/(myc?)
to E).

6.1.2.2.4. Compton-Rayleigh: The Rayleigh scat-
tering of Compton scattered photons is obtained
similarly

IRS, (@, 4, x)— A(ﬂo,io n,4)

X KKN(A" 'QO)S(AM a, Z)

’Ildn’ 1
o #+_
Inl
%(Vl B)

X
VA =11 —nd)—(a —n'ne)

x Z A+ (o - o PP)F (A, 0y 0, Z)

x(1+9&) (@, 4, 0', 4", %, 4o, X))

ndn’ 1

+J' an’

ﬂz" lu'0+_
[0l

) 20, 8,)
JA =1 —nd)—(@+nn)

X z A + (0 - @} OV)F(A, @y 07, Z)
k=1

x(1+98) (@, 4, 0", wo,lo,x))} (78a)

where

é)(wlw A’ ‘”o,'lo,X)

2
TR

(@ @i F) -1
( . ,"(t))2+1

Ay
4o
x <cos 2P + 0+

xcos (P + PP )>

1 (@ o) -1
2(0 0P +1

Intensity (arb. units)
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Fig. 26. Total double-scattering spectra for water excited
with Ey=60keV and calculated with the code SHAPE
modified for linearly polarized incidence (Fernandez,
1993b). The geometry is 9, =45°, 3 =135°, g, =¢ =0, i.e.
the scattering angle © is 90°. The plot shows the spectra
calculated with three orientations of the polarization line of
the incident beam: y =0° (parallel), y =45° and y =90°
(perpendicular).
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xcos2(PD) + P + PiH 4 y)

L=\
&)
A h A—A(A-4
z+7+ o (1(: —2)

X cos AP 1B — YW — YD 4 y) (78b)

Y4 and PP are given by equations (61d) and
(63c), ¥ by

cos P (B

_ 20/ 1=n5 —no/1—n" cos(po — 9i*))

(1 — 02)1/2

(78¢)

B, =max(0,an,— D), y,=min(l,an,+D), B,=
—min(0, any + D), y,= —max(—1,an,— D), and
o - o;*)—as in equation (61g)—are defined in terms
of a, D, ¢i® and 5%, given by equations (63d—g).
The meaning of the limits B, and y; is as in the
preceding equation. The (C, R) intensity is continu-
ous and its wavelength spectrum extends from 4, to
Ao+ 24 (as in the preceding case).

6.1.2.3. Influence of the polarization plane orien-
tation. The vector model predicts first- and second-
order (component /) intensities which depend on the
angle y measuring the tilt of the polarization line with
respect to the scattering plane. The degrees of polar-
ization and the intensities of these scattering effects
present a quite different sensitivity to the incident
polarization. The Rayleigh effect gives totally polar-
ized radiation after the first collision for any angle y
not null. The first-collision Rayleigh intensity is
straightforwardly related to y vanishing for parallel
polarization (y =0). On the other hand, the Comp-
ton effect gives mixed unpolarized and polarized
fractions at almost all scattering angles. It is fully
polarized in the backward direction, and introduces
a strong depolarization at right and higher angles
scattering whose strength is very dependent on the
angle x. The first-collision Compton intensity is also
strongly influenced by y, but does not vanish for
x =0 as for the Rayleigh effect. These different
behaviours play an important role in multiple scatter-
ing terms where participate scattering contributions
from atoms located in all directions. The influence of
x in second-order intensities is contained in the factor
%’. Although ¥’ admits a closed description [see
equation (69b)], it belong to the integrand of one (or
two) angular integral(s) and its effects cannot be
described straightforwardly.
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The influence of the incident polarization is better
appreciated if one is shown calculations of the same
y-ray spectrum with different orientations of the
polarization line. Figure 26 shows several spectra of
water built with the code SHAPE by adding the
contributions of the first two orders of scattering and
filtering with a Ge detector response including escape
peak. These spectra correspond to an excitation with
the 59.54 keV line of 'Am and a right scattering
angle (@ = 90°), obtained with incidence and take-off
polar angles on the normal plane of scattering
(8,=45°9 =135°, ¢ = @, =0). The monochromatic
peaks are broadened with a Gaussian shape as in
Fig. 19. The multiple scattering orders are not
retouched. On the spectra of Fig. 26 the effect of x
is important to determine the signal/noise (or
peak/background) ratio, a figure of merit frequently
used in spectroscopic measurements. The best
signal/noise ratio is obtained for y =90°, i.e. for
polarization normal to the scattering plane, which is
also the condition for maximum scattered intensity.
This signal/noise ratio improves that of the similar
spectrum simulated with unpolarized radiation
[shown in Fig. 19(d)], which agrees with the exper-
imental practice of using polarized sources for back-
ground reduction (Christoffersson and Mattson,
1983).

6.2. Multiple Scattering Intensities for Circularly
Polarized Sources

In this section we shall compute the intensity terms
for the special case of a circularly polarized source.
For simplicity, we shall describe the transport in the
system S of Stokes. An arbitrarily linearly polarized
source of monochromatic and collimated y-rays of I,
photons cm~2s~2 is represented mathematically, in
the Stokes system, by a source function (see Table 2).

PN, A)=1,5(w — ) 6(4 — ) (79a)

1
0
0
1
which corresponds to ellipticity 1, i.e. § = n/4. Alter-
natively, circular polarization with the opposite sense

of polarization, corresponding to f = —=n/4, is ob-
tained with the source

1

PN, A)=I,0(@ — ) 6( — 4) (79b)

-1

In this section we shall use equation (79a).

Substitution of equations (64) and (65a) in the
solution of the transport equation gives, for the
first-order intensity vector corresponding to the one-
collision chain

@, 4) — (@, 2)
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involving the generic interaction =, the relation-
ship

I%a))(m(w’ A) = A("o; 21)’ n, j-)
1
aj cos 2¥

x k, (@, 4, @, 4) 2, sin2¥ |’ (80)
1

27
where ¥ is defined as in equation (11c), with @, in
place of @’. As in equation (67a), we can represent
the first-order intensity vector I)® decomposed in
two fraction beams, the unpolarized and the polar-
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The component 7 of the first-order intensity, repre-
senting the intensity collected by a polarization insen-
sitive detector, is given by the first component of the
intensity vector (80),

I?a))(,S) (w’ j') = A("Oa 10’ ", A)ka(w’ l’ wOa }”0)1 (82)

which is coincident with the first-order intensity
obtained with the unpolarized source [compare
equation (82) with equation (47a)]. Analogously,
the second-order intensity due to the collision
chain

(@o, o) —— (@', ) —— (@, 1)

involving two generic interactions « and 4 is given by

® 1
Iﬁ),%’,(w,l)=z4(no,lo,n,i)j dl’j do’ —
0 4n I" I

N (A +sgnn) ko, 4,0, Ak, (@, 1, 0, 1) (1 + 9. 4(o, Ao, A, @y, Ay))

2

+ (1 =sgnn) ky(o, 4o, Ak, (@, 1, a4, )1 + G s(@, 4,0, 1, 4, &)

wow
_+_,
Il 'l

(83a)

2

’

ﬁ';+£7
Ind ~ In’l

ized fractions, with the two fractions given by the
relationships

I?a))(s,u = A("O’ ;l'oa n, '1)

1

0
X ka(w9 )'a @y, AO) (1 —Pa) 0 ’ (813)

and 0

Iglﬂ))(S)‘,:A(no,)ﬂ"”l) l
cos 2¢ cos 2{
x k, (@, 4, @, )P, in 2¢ cos 2L (81b)
sin 2

where P, represents the degree of polarization [see
equation (Se)] of the interaction = for the circularly
polarized source

AL 4 IDS? 4 1 DE?y1/2

P (@, 4, 0, k) = el agﬁ)gsy b

)2, (8lc)
The polarized fraction (81b) represents an elliptically
polarized scattered beam whose major axis of polar-
ization forms an angle & = ¥ (as in equation (11c)
with @, in place of ") with the scattering plane, and
whose ellipticity is given by any one of the relation-
ships

=(afl + 24

ay
cos{ =—5—"—— 1d
= L ¢
sin{ = ) (81e)

@+ ™

The angles { and ¢ are defined analogously to the
angles B and y of equations (3a) and (3b).

which compared with the expression for the same
intensity term deduced with the unpolarized source
(Section 5.1), differs only in the symbol for the
corrective factor 9”,(w, A, @', 4, @, 4y), defined in
terms of the primed matrix coefficients as

" @, A, @', A, 0y, A)
= aybcos2(¥Y,+ ¥5)

=9 (0,4, 0,2, ay, A), (83b)

where ¥, and ¥}, are angles of spherical triangles for
the interactions = and #, respectively, similar as those
shown in Fig. 2 for one single interaction. These
angles are defined, respectively, by equations (50c)
and (50d). The expression (83b) is identical to
equation (50b), when that is expressed in terms of the
primed coefficients. Obviously, the coefficients in
equation (83b) cannot assume the previous meaning
of degree of polarization as in equation (50b). Fur-
thermore, the expressions for the components Q and
U, substantially more complicated and not included
in this article, also coincide with the corresponding
expressions calculated for the unpolarized source.
Therefore, the first three Stokes components of the
second-order intensity are identical to the corre-
sponding components for the unpolarized source. In
contrast, the component ¥ of the intensity is given by

129 (@, ) = 2l 83¢)

meaning that the polarized fraction is also elliptically
polarized after the second scattering.

The mentioned properties are sufficient to make a
comparison between the multiple scattering intensity
terms for the circularly polarized source with the
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Fig. 27. The degrees of polarization for the Compton and
Rayleigh effects, for a circularly polarized incident beam,
are shown as functions of the scattering angle for several
values of the incident energy. The degree of polarization by
Rayleigh scattering is constant. In contrast, the Compton
degree depends on the above two variables and is respon-
sible for the gradual depolarization of the beam. The
depolarization of the beam is minimum (null) for forward
and backward scattering, and maximum for right angle
scattering.

corresponding intensity terms for the unpolarized
source. The only difference betwen the first- and
second-order intensities for both sources is precisely
the component ¥ of the intensity, which is null for the
unpolarized source, and not null for the circularly
polarized one. Since the other components are identi-
cal (component to component) for the first two terms,
the ¥ component is the only responsible for the
change in the degree of polarization which regulates
the intensity of the polarized and unpolarized frac-
tions of the beam after the collision. The degrees of
polarization for the Rayleigh and Compton effects
are, respectively,

Pr(®, 4, 0, %) = 1, (84a)

and

(bX2 = by +a*(1 —b)”

Pe(@,\, @, 4g) = a—b2—b)

, (84b)

where a(4, 4) = 4/A+ Ao/A, b(4, Ao) = (A — Ao)/Ac.
It is easily seen that the unitary degree of polarization
for Rayleigh scattering means that only fully polar-
ized radiation is produced in the first collision for any
scattering angle. Figure 27 shows the degree of
polarization for Compton scattering for several ener-
gies of the incident beam. The depolarization in-
creases with the energy, and is concentrated around
the scattering at right angle (@ = 90°). For forward
and backward scattering, the depolarization is almost
non existent.

Due to the mentioned similarities, the expressions
for the intensity terms involving the photoelectric,
Rayleigh and Compton effects are equal to those
already given in Section 5, and will not be repeated
here.
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6.3. Complementary References on Polarization
Effects

Linear polarization has been intensively studies by
other authors who investigated aspects and appli-
cations not covered in this article. The following
complementary references are specific to linear polar-
ization: Miller and Wilcox (1961), Maximon (1989),
Maximom and Olsen (1962), Ewan et al. (1969),
Honzatko and Kajfosz (1969), Kel'ner (1969),
Kel’ner et al. (1975), Olekhnovich (1969), Litherland
et al. (1970), Logan (1971), Evans et al. (1977), Hart
(1978, 1991, 1992), Hart et al. (1991b), Le Page et al.
(1979), Flack and Vincent (1980), Vincent and Flack
(1980a, 1980b), Vincent (1982), Lawrence (1982,
1983), Dwiggins (1983), Brummer et al. (1984),
Ohkawa and Hashimoto (1984), Materlik and Suortti
(1984), Alexandrov et al. (1989), Siddons et al. (1989),
Wielopolski et al. (1989), Scofield (1990), Ribberfors
and Matscheko (1992).

Circularly polarized photons have been recently
used to probe the magnetic properties of some ma-
terials (Gibbs et al., 1989; Sakai et al., 1989), with
recourse to the explicit dependence of some terms in
the polarization matrix on the spin of the electrons.
These terms were not discussed in this article, because
we assumed randomly distributed spins (see Section
4.3). Complementary theoretical and experimental
articles on circular polarization are Schopper (1958),
Huber et al. (1963), Schultz et al. (1989), Ishikawa
(1989).

Elliptically polarized photons were specifically
studied by Brummer et al. (1982) and Koide et al.
(1991).

7. EFFECTS OF THE POLARIZATION IN THE MONTE
CARLO CODES FOR PHOTON TRANSPORT

The Boltzmann transport equation for inhomo-
geneous targets with complex boundaries, or complex
source distributions, or involving several kinds of
particles, cannot be attacked with analytical tech-
niques of the kind shown in this article and must be
solved numerically. Numerical calculations of the
X-ray flux can be obtained by constructing model
trajectories of photons accotding to the Monte Carlo
sampling method (Fano et al., 1959; Cashwell and
Everett, 1959; Carter and Cashwell, 1975; Kalos and
Whitlock, 1986).

The Monte Carlo method was probably invented,
but not so named, by Fermi in the early 30’s to give
accurate predictions of experimental results
(Metropolis, 1985). It was developed until reaching
its modern form by Metropolis, Richtmyer, Ulam,
von Neumann, Everett and Cashwell in the post-war
Los Alamos Scientific Laboratory with the first paper
of this group submitted for publication in the
spring of 1949. Other groups contributing to the first
steps of Monte Carlo were at National Bureau of
Standards, Rand Corporation and IBM. The unpub-
lished paper from Spencer (1948) that we mentioned
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above is a very early documented application of
Monte Carlo performed at NBS.

The code MCNP (Monte Carlo Neutron Photon)
developed by the group X-6 is the workhorse at
LANL for neutron, photon, and coupled neutron—
photon calculations using the Monte Carlo method
(Foster and Godfrey, 1985; Briesmeister, 1986).
MCNP appeared in 1976 as a combination of the
codes MCN [Monte Carlo Neutron, (Cashwell e al.,
1972)], MCG and MCP [Monte Carlo Gamma and
Monte Carlo Photon, (Cashwell, et al., 1973; Everett
and Cashwell, 1973)]. MCNP uses detailed neutron
and photon physics models that contain the most
up-to-date cross-sections and reaction information
from the ENDF/B and other evaluations. MCNP
transports particles in generalized three-dimensional
geometries are built up using different surfaces. State-
of-the-art Monte Carlo methods are used in all
phases of the particle transport including the source,
geometry-tracking, variance-reduction and tally-esti-
mation processes. Version 4 of MCNP, presently
under test, integrates the code ITS (i.e. electrons) to
MCNP (Mack et al., 1985). In its actual state MCNP
includes Rayleigh and Compton scattering, but ne-
glects polarization effects.

Current transport calculations using the Monte
Carlo technique, including the now widely-used
ETRAN codes of Seltzer and Berger (Seltzer, 1988a,
1988b, 1991), generally ignore coherent (Rayleigh)
scattering. The reasons for ignoring coherent scatter-
ing are that the scattered-photon energy is unchanged
from that of the primary photon, the angular distri-
bution at high photon energies is strongly forward-
peaked, and its contribution to the total photon
interaction cross section is small, reaching its maxi-
mum contribution of only 10% just below the photo-
electric effect K absorption edge, for high-Z elements.

In certain situations, such as in medical diagnostic
and industrial flaw-detection X-ray imaging, coherent
scattering can have a significant effect on the image
sharpness, as their single-scatter calculations show
that coherently scattered photons diverge sufficiently
from the primary ray to degrade image contrast, and
that they account for a significant fraction of the total
scattered energy fluence at the image receptor.

ITS (Integrated TIGER System) is a code derived
from ETRAN for coupled electron and photon trans-
port with and without the presence of macroscopic
electric and magnetic fields of arbitrary dependence,
developed at Sandia National Laboratories by
Halbleib and Mehlhorn (1984). ITS can treat 3-D
geometries and include a P-code supplement with
detailed ionization/relaxation physics devoted to low
energy photon studies, but it does not include Ray-
leigh scattering and binding corrections to incoherent
scattering. It does not consider polarization effects.

In addition to the NBS/NIST ETRAN codes of
Seltzer and Berger, another system of radiation trans-
port codes, EGS, has been developed at SLAC by
Ford and Nelson (1978), of which the EGS4 version
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has been described by Nelson, Hirayama and Rogers
(1985) and more recently by Nelson and Namito
(1990). EGS4 does include coherent scattering as an
option. This option of EGS4 was used by Rogers and
Bielajew (1990) to calculate narrow-beam and broad-
beam central-axis depth dose for 30-keV photons
incident on water, for penetration depths up to 27
mean free paths. Their results indicated that the
narrow-beam geometry is much more sensitive to the
inclusion of coherent scattering than is the broad-
beam geometry. In either case, the with and without
coherent scattering differences were found to be
substantial. At 4 mean free paths, inclusion of coher-
ent scattering decreases the broad-beam result by
only 0.7%, but decreases the narrow-beam result by
20%, and at 18 mean free paths these decreases are
19 and 105%, respectively. Recently, EGS4 has been
extended to include linear polarization effects in co-
herent and incoherent scattering (Namito e? al., 1993).

A detailed comparison between the biggest codes
for Monte Carlo simulation together with an exhaus-
tive list of applications can be found in the review
article by Andreo (1991). However, it is apparent that
almost all of these codes neglect polarization effects.
This fact precludes not only their use with polarized
sources where a correct approach is essential, but also
for the case of unpolarized sources introduces the
error in the photon transport that we pointed out in
Section 5. As the secondary electrons from these
interactions are polarized (which changes the angular
distribution of charged particles into the target), the
codes for electron transport are also very sensitive to
this approximation. A more subtle error is possible
for those codes regarding coupled photon—electron
transport under external fields. The Compton polar-
ization matrix that we give in Section 4 (and with
which we compute the vector intensities), corresponds
to randomly oriented spins of the electrons in the
atoms of the target. A material exposed to an
external magnetic field presents a polarization matrix
with non-zero coefficients in the last row and column,
giving a changed response (not considered in this
article) to the unpolarized source.

Some effort has been made in developing polariz-
ation dependent Monte Carlo simulation codes.
Actually, just a few computer codes that compute
intensities including polarization can be used with
unpolarized and linearly polarized sources. Unfortu-
nately, these codes either are devoted to a specific
problem such as the simulation of Compton profiles
(Felsteiner et al., 1974; Felsteiner and Pattison, 1975;
Tanner and Epstein, 1976c; Chomilier et al., 1985;
Pitkanen et al., 1986), or are still under development
and have been not sufficiently tested (Janssens et al.,
1993; Vincze et al., 1993). None of them includes
electron transport. These codes do not use a general
beam of a partically elliptically polarized source, and
do not estimate the other parameters (other than the
intensity) that completely define the polarization
state.
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8. SUMMARY AND CONCLUSIONS

The effects of polarization on the multiple scatter-
ing of X-ray and low energy y-ray photons have been
considered within the framework of the Boltzmann
transport theory. We have used an iterative analytical
solution to the integro-differential transport equation
to build up the intensity contributions to the scatter-
ing spectrum of thick targets for a generic elliptically
(partially) polarized source beam. The vector solution
gives the Stokes components for the partial intensity
terms of first- and second-order (corresponding to
one and two collisions). These terms were calculated
for all the combinations of the prevailing interactions
in the low energy y-ray regime: photoelectric effect,
and Rayleigh and Compton scattering. The polariz-
ation matrix for all of the interactions was given.
Rayleigh and Compton cross-sections included
respectively the form factor and the scattering
function. The calculated intensities have accounted
for the attenuation in the target. The overlapping
of the calculated terms allowed the build-up of
detailed backscattering spectra for three types of
sources: unpolarized, linearly polarized and circularly
polarized.

The scattering of unpolarized photons gives a
partially polarized beam with a fraction of linearly
polarized photons. The intensity of the spectrum is
higher when compared with results from the equival-
ent scalar transport equation and averaged polariz-
ation cross-sections. This is due to the greater
penetration of polarized X-rays. The degrees of
polarization for Compton and Rayleigh scattering
are similar and have their maxima at or near 90°
scattering, for which the scattered beam is almost
completely polarized. The multiple scattering reduces
this degree of polarization, increasing the unpolarized
component. Not all the intensity terms are modified
by the effect of polarization. Only the terms with
Rayleigh or Compton scattering present differences.
The terms with at least one photoelectric scattering
remain unchanged (assuming photoelectric effect in-
dependent of polarization). This fact ensures us the
complete validity of previous calculations with the
scalar equation in this case.

Linearly polarized photons scatter into linearly
polarized photons, with maximum degree of polariz-
ation of Compton photons for backward scattering,
and minimum for right angle scattering, i.e. Compton
scattering depolarizes the beam. Rayleigh scattering
gives a fully polarized scattered beam for any scatter-
ing angle. Multiple scattering reduces the depolariz-
ation. The intensity is dependent on the orientation
of the polarization line of the incident beam. The
maximum intensity corresponds to a polarization line
perpendicular to the scattering plane. A linearly
polarized source “perpendicular” serves to improve
the peak-to-background ratio  with respect to an
identical Compton scattering experiment performed
with unpolarized radiation.
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Circularly polarized photons produce elliptically
polarized photons. Compton scattering partially de-
polarizes the beam, having the maximum depolariz-
ation for 90° scattering. In contrast, Rayleigh
scattering gives only a polarized scattering beam.
Multiple scattering reduces the depolarization. The
first- and second-order intensities have the same
expressions as for the unpolarized source.

A survey on the bigger Monte Carlo codes for
photon transport shows that only EGS4 includes
linear polarization. This omission makes that the
codes underestimate Compton—Rayleigh background
for the case of unpolarized sources. A few new Monte
Carlo codes can handle linear polarization, and there-
fore, are practicable for synchrotron light sources.
However these codes cannot handle a general ellipti-
cally polarized source and they are not sufficiently
tested.

The expressions for the intensity terms have been
integrated to improve the preexisting code SHAPE,
which offers the possibility of investigating the extent
of the several interferences building scattered X-ray
spectra for different geometries of excitation—
detection, excitation energies, composition of the
target, and polarization of the source. This code can
substitute advantageously Monte Carlo simulations
in those cases where the simple geometry considered
is sufficient. The expressions shown in the article, as
the code SHAPE, can be straightforwardly adapted
to the more general case of a multi-layer composed
of many multielement layers. An additional modifi-
cation to the polarization matrix to include the
missing terms which depend on the spin of the
electrons can render this code a useful tool to
study magnetic properties of multi-layers by using
polarized y-rays.
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NOMENCLATURE
A Atomic weight.
B Ellipticity angle.
o As a subindex denotes Compton scatter-
ing.
X Angle defining the orientation of the ma-

jor axis of the ellipse on the polarization
plane.

6(x—a) Dirac J-function.
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Kronecker d-function.

Energy of photons.

Perpendicular and parallel vectors (in the
polarization plane) with respect to the
scattering plane.

Electric field vector.

Coherent atomic form factor for an atom
with atomic number Z.

Line emission probability of the line at 4,
into its own spectral series.

Angular flux.

Angular flux of nth order, i.e. the angular
flux due to n interactions in the medium.
Plank constant.

Matrix kernel rotated in the laboratory
system.

(=cos 9) Director cosine ,.

nth order Stokes intensity vector, for a
chain of n events (a,, ..., a,).
Component i of the nth order Stokes
intensity vector, for a chain of n events
(a,...,a,).

Intensity components of the Stokes inten-
sity vector.

Intensity components of the intensity vec-
tor (set L).

Constant intensity of the source.
Angular intensity of nth order.
Wavelength-integrated angular intensity
of nth order.

First-order intensity due to the inter-
action .

Second-order intensity (corresponding to
the chain of interactions 2 and 4, in this
order).

Second-order intensity of the photons
produced as a consequence of one inter-
action 2 on the atom Z, followed of one
interaction ¢ on the atom Z;.
Absorption-edge jump.

Rotation angles.

Propagation direction of the photons.
Interaction kernal describing the prob-
ability density (per unit path, per unit
solid angle, per unit wavelength) that the
process « can change the phase-space
variables @’, A’ to o, A.

“Mass” kernel for the interaction 2 with
the specie of atoms Z;.

Klein-Nishina factor.

Rotation matrix in the Stokes (or L)
system.

Wavelength of the emitted photons.
Wavelength of the monochromatic source
beam.

Wavelength of the characteristic line i.
Compton wavelength.

Total attenuation coefficient obtained by
adding the attenuation coefficients for the
dominating processes in the low energy
y-ray regime [see equation (3)].
(=n())-

(=p(4)).

Total mass attenuation coefficient for the
single element j.

Avogadro’s number.

Frequency.

Flight direction of the photons.

As a subindex denotes photoelectric effect.
Degree of polarization for the interaction

a.
Radiative photoelectric attenuation co-
efficient for the emission of the line at 4;.
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Scattering angle.

As a subindex denotes Rayleigh scatter-
ing.

Classical radius of the electron.

Source term.

Incoherent scattering function for an
atom with atomic number Z.

o
sgn z
¥(x-a)
¢

W,

V4

Scattering cofficient.

Sign function. .

Heavyside (unitary step) function.
Azimuthal angle.

Weight fraction of element j in the
sample.

Atomic number.



