

Neutron Detection

Fachhochschule Aachen - Aachen University of Applied Sciences F.Hoyler FH-Aachen Standort Jülich, Germany Telefon +49 241 6009 53116, Telefax +49 241 6009 1065 hoyler@fh-aachen.de, www.fh-aachen.de Content

- The neutron
- Flux (density) and Cross Sections
- Elastic Scattering and Moderation
- Neutron Detection
- Dosimetry
- Neutron Flux Measurement
- Fast Neutron Spectroscopy
- (missing spectroscopy of thermal, cold and ultracold neutrons)

The Neutron (for our purposes)

- Charge q=0
- Mass $m_n = 1.66749 \cdot 10^{-27} \text{ kg} = 1.008665 \text{ u} = 939.57 \frac{\text{MeV}}{c^2}$

• Size
$$r_0 = 1.2 \, \text{fm} = 1.2 \cdot 10^{-15} \, \text{m}$$

- Energy / speed relation (non relativistic) $v = \sqrt{\frac{2E}{m}} = c \cdot \sqrt{\frac{2E/MeV}{939}}$
- thermal neutron energy

$$E_{th} = 25 \text{meV}; v_{th} = 2200 \text{ m/s}$$

Neutron = indirectly ionizing radiation

It produces charged particles via

- *i*) reactions e.g. ${}_{5}^{10}B + n \rightarrow {}_{3}^{7}Li + {}_{2}^{4}He$
- ii) recoil (by "hitting")

Flux density φ

- number of particles (per time) going through an arbitrarily oriented surface
- if at position r the particle density (particles per volume) for the speed \vec{v} is $n(\vec{r})$ the corresponding flux density is:

$$\varphi = n \cdot v$$

Flux density

$$\varphi(\vec{r}) = \int n(\vec{r}, v) \cdot v \, \mathrm{d}v$$

$$\varphi = n \cdot v$$

Cross Section

Event rate R of a given reaction

A(a,b)B

is proportional to the **flux density** of the incident particles and the number of target nuclei $R = \sigma N \varphi$ or

- Taking the particle density: $r = \sigma n \varphi = \Sigma \varphi$ With the macroscopic cross-section for the target $\Sigma = \sigma n$
- Angular differential cross section Rate in detector covering solid angle $d\Omega$ $dR(\theta, \phi) = \frac{d\sigma(\theta, \phi)}{d\Omega} \cdot N \cdot \phi \cdot d\Omega$

Cross sections depend on projectile energy (excitation function)

Reactions with large crosssection are prefered

Unit:

 $1 \text{ barn} = 10^{-24} \text{ cm}^2$

There can be resonances

"Not so good for the reactor"

If the target + the neutron energy match a level in the Comp0und nucleus

Example for prediction of reaction rate

<u>Example</u>: Reaction rate for production of ⁵⁶Mn , using 5g ⁵⁵Mn in neutron flux of $\varphi = 10^8 \cdot 1/\text{ cm}^2\text{s}$

$$R = \sigma N_{1} \phi = \sigma \frac{m}{M} N_{A} \phi =$$

$$= 1.33 \cdot 10^{-23} \text{ cm}^{2} \cdot \frac{5g}{55 \frac{g}{\text{mol}}} \cdot 6.022 \cdot 10^{23} \frac{1}{\text{mol}} \cdot 10^{8} \frac{1}{\text{cm}^{2}\text{s}} =$$

$$= 0.8 \cdot 10^{8} \frac{1}{8}$$

Kinematics (Test it on a Snooker table)

Laboratory

- Target at rest
- CM in motion
- 2 coordinates \vec{r}_p and \vec{r}_T
- 2 angles θ_L and ϕ_L

CM-System

- Target and projectile move
- CM at rest
- Only 1 nontrivial coordinate $\vec{r}' = \vec{r}'_p - \vec{r}'_T$ and 1 angle θ_c

Transformation LAB - CM

To go from one system to the other: add / subtract v_{cm}

This implies:

Angles change, solid angles change ...

Formula for the energy of the scattered particle in elastic scattering:

$$A(a,a)A$$
$$E' = E \cdot \frac{m_a^2}{\left(m_A + m_a\right)^2} \cdot \left[\cos\theta_L + \sqrt{\cos^2\theta_L + \left(\frac{m_A}{m_a}\right)^2 - 1}\right]^2$$

After 2nd collision each bin (here 1 a.u.) box Neutron - Proton

100000

10000

0.01

And so on...

Only few collision needed to concentrate intensity at low energies

(18 from 3 MeV to 25 meV)

Energy (a.u.)

→ 3 rd → 4 th

← 1st collision" — 2nd

More complicated if cross section non isotropic

120

100

Neutrons are indirectly ionizing radiation!

Detection uses interaction of neutrons with detector material $\begin{array}{l} 10 B(n_{th}, \alpha)^{7} Li^{*} \quad Q = 2.31 \text{MeV } exc. state 96\% \\
10 B(n_{th}, \alpha)^{7} Li \quad Q = 2.79 \text{MeV } g.s. 4\% \\
\end{array}$ Thermal neutrons $\begin{array}{l} 6 Li(n_{th}, \alpha)T \quad Q = 4.78 \text{MeV} \quad \sigma = 940 \text{b} \\
3 He(n_{th}, p)T \quad Q = 0.764 \text{MeV} \quad \sigma = 5330 \text{b} \\
\end{array}$ $\begin{array}{l} nat Cd(n_{th}, \gamma) \quad (\gamma + conversion electrons) \quad \sigma = 2520 \text{b} \\
\end{array}$

Detectors must discriminate against other radiation (Gammas!)

Ionization (fission) chambers – walls with ^{235}U					
Proportional counters	- walls loaded with material - counting gas ${}^{3}He, BF_{3}$				
Scintillators e.g.	CdTe, Li-glass = up to 8% Li content				
Solid state	(Li-sandwiched)				

Gamma Discrimination due to pulse height:				
Energy of fission products	around 100 MeV			
Energy of heavy ions	around 1 MeV			
Energy deposition of Gammas	some keV!			

Mainly the recoiling nuclei are detected

Proportional counters – counter gas: Hydrogen, Helium..

Scintillators mostly plastic scint. for recoiling protons

Gamma discrimination more serious:

Prop. counter

 recoil protons – high efficiency requires measurement of low energy protons – low threshold in energy

Scintillators

- as above + light ouput low for heavy ions / compared to electrons

Solution – Pulse shape discrimination

Mostly thermal Neutrons are detected

In many dosimeters proportional counters are used (³He and BF_3):

$${}^{10}_{5}B + n \rightarrow {}^{7}_{3}Li + {}^{4}_{2}He$$
$${}^{3}_{2}He + n \rightarrow {}^{3}_{1}H + p$$

Sometimes counter walls loaded with ⁶Li, Gd or ²³⁵U

Personal Dose using Albedo Dosimeters (TLD)

Germany

If neutrons contribute to effective dose more than 10% the use of Albedo dosimeters is recommended

1 Front View, 2 casette with 4-TLD, 3 Rear view with albedo window

Detector measures H_p(10) from Photons and *Neutrons* **Bor plastic - shields TLD from thermal neutrons** Photon detection TLD pairs of ⁶LiF and ⁷LiF material Thermal neutrons: ⁶Li+n $\alpha + {}^{3}H$ Fast neutrons: **Thermal neutrons:** Are moderated in the Are detected using the body. Thermal neutrons emerging from the body front window (Albedo) are detected at the rear window

Electronic Dosimeter EP D2Can be used for measurement of $H_p(10)$ from neutrons

Abb.10: Technische Zeichnung aus dem englischen Benutzerhandbuch der Firma Siemens

Ambient Dose from Neutrons

Response of the detector must be proportional to the neutron dose rate

 $R = \sigma \cdot N \cdot \varphi$

Most methods rely on activation: ${}^{A}X(n,\gamma){}^{A+1}X$

If flux not too high (and/or cross section not too big) Production rate is nearly constant:

Resulting activity of radioactive product nucleus

$$\frac{\mathrm{dN}_2}{\mathrm{dt}}(t) = \mathrm{R} - \lambda \mathrm{N}_2(t)$$

$$A(t) = \lambda \cdot N_2(t) = R \cdot (1 - e^{-\lambda t})$$

Activation curve

After 3 Half-Lifes roughly 90% of maximal attainable activity is reached

Very common choice of reaction for thermal flux

¹⁹⁷
$$Au(n,\gamma)$$
¹⁹⁸ $Au, \sigma_{th} = 98.5b, T_{1/2} = 2.7d, E_{\gamma} = 411,79 \text{ keV}, I_{\gamma} = 95.5\%$

"Cadmium ratio": Measure the activiation with bare foil and foil covered with Cadmium (thick enough to absorb all neutrons with E<0.4 eV)

- measure of the thermalization of the neutron spectrum

Other probes, to cover other energy ranges

Threshold reactions for fast neutrons:

e.g. ${}^{23}Na(n,\alpha){}^{20}F$, $T_{1/2} = 11s$, $E_{\gamma} = 1,63 \text{ MeV}$, $E_{threshold} \approx 7 \text{ MeV}$, (*n*, γ) on Na has been used in Tokaimura

In reactor-instrumentation: Chain with Hf (or In) spheres along the fuel elements. Measures vertical flux distribution

Not useful for transients since long delay

Continuous flux measurement using SPN – detectors (SPN - self powered neutron detector)

 β -from emitter reach collector

 current between emitter and collector

with thermal

Used in reactor instrumentation

Emitter materials:	Material	Cross section/ barn	Half-Life/s	Typical currents/ A/(n/cm ² s)		
	Vanadium	4.9	225	5x10 -23		
	Rhodium	139	44	4 4 9 21		
		and 11	265	1x10 -21		
Time behavior after "shutdown" - response time depends on half-life of activation product						
$\begin{array}{c} 0.6 \\ 0.4 \\ 0.2 \\ 0.1 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ \end{array}$	- U - C	Using Rh: Flux of 10^{13} n/cm ² s gives current of $I = 10$ nA				

Ionization Chambers for Flux Measurement Counting only for very low flux range possible (dead time) -Ionization chambers are used in current mode

Reactors after shutdown have very high activity levels

Thus high levels of Gamma-background

Discrimination using compensation

(difference = neutron signal)

or

Look at rms-of current signal:

Fission event produces about 3 orders of magnitude more charge than gamma event!

Spectroscopy of slow or even ultra cold neutrons not topic of this talk

3 main methods to determine neutron energy spectra:

i) Measure thermal neutrons, using several detectors with different efficiency for different neutron energies: "Bonner spheres"

Central 3He-Prop Counter

Deconvolution: Find original spectrum from the measurement

Measurement: Convolution of spectrum S(E) with response $R(E_n, E)$

Natural background in Braunschweig Mean flux dens. 46 n/cm²h (1y measuring time)

Blue-inset: measured response of liquid scintillator

Example of PTB: dd- and dt-reaction in JET (Culham)

If Scintillator, H_2 or ⁴He prop. counter is used - these "boxes" are obtained (isotropic angular cross sections)

Again deconvolution is required (In Germany – ask PTB) Measured counts at pulse height h: Convolution of spectrum $S(E_n)$ with response $R(E_n,h)$

Tedious but straightforward for directed neutron beam:

Proton recoil detector

Here: the energy of each neutron is measured individually using the kinematics

Requires a "start" signal either from pulsed accelerator or from scintillating target.

iii) TOF (time of flight measurement)

Using the nonrelativistic formula one finds for a 1 MeV neutron:

It takes roughly 75 ns for 1 m flight

One needs a (fast) start signal. (Pulsed accelerator or associated particle in a (d,t)generator)

Electronics for TOF spectrometer including the Gamma-discrimination

$$v = \sqrt{\frac{2E}{m}} = \sqrt{\frac{2E / \text{MeV}}{939}}c$$

Literature

My favorite book

- •Atoms, Radiation, and Rad. Protection, James E. Turner
- •Nuclear Physics, John Lilley
- •Ortec catalogue of 1995
- Canberra Eurisys catalogue (CD-rom)

Thank you for your attention

Fachhochschule Aachen - Aachen University of Applied Sciences F.Hoyler FH-Aachen Standort Jülich, Germany Telefon +49 241 6009 53116, Telefax +49 241 6009 1065 hoyler@fh-aachen.de, www.fh-aachen.de