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The Neutron (for our purposes) -
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Charge g=0
MeV

C2

Mass  m =1.66749-10%" kg =1.008665u = 939.57

Size r,=1.2fm=12-10"m
. L 2E 2E [ MeV
Energy / speed relation (non relativistic) V= F =C-

939

thermal neutron ener _ \ —
gy E, =25meV;v, =2200m/s
Neutron = indirectly ionizing radiation

It produces charged particles via
i) reactions e.g. 'B+n— [Li+ ;He
ii) recoil (by “hitting”)
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Flux FﬁH
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Flux density @

= number of particles (per time) going through an arbitrarily oriented
surface

= if at position I the particle density (particles per volume) for the
speed V is n(r) the corresponding flux density is:

®=nN-V

Flux density

o(r) = j n(r,v)-v dv
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®=N-V

¢ . particleflux densityge=n-v
N, : number of particles crossing surface AA

n :particle volume density projektiles
v : speed of projektiles .y

 7
Particles not further AS =V-At

away from AA than As N, n-AV _n-AA-AS-_n v

can reach the surfacein P~
fime At AA-At  AA-At AA - At
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Event rate R of a given reaction

A(a,b)B
is proportional to the flux density of the incident particles and
the number of target nuclei R = oN¢ oOr

Taking the particle density: r = ong = Z@

With the macroscopic cross-section for the target £ = on

Angular differential cross section

Rate in detector covering
solid angle dQ)

do(6,9)
dQ
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Cross sections depend on projectile energy (excitation function)

Reactions with
large cross-
section are
prefered

Unit:

1 barn = 10-24 cm?
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There can be
resonances

“Not so good
for the reactor”

If the target + the neutron
energy match a level in the
CompOund nucleus
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Example for prediction of reaction rate

Example: Reaction rate for production of *®Mn , using
5g °*Mn in neutron flux of ¢ =10°-1/cm?s

m
R:Gqu):GMNA(p:

=1.33-10%cm?- 1

N 6.022.10% 2 .10° 2
s 9 mol cm?s

:0.8-1081
S
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Kinematics (Test it on a Snooker table) F
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Laboratory

Target at rest

CM in motion

2 coordinates I, and I,

2 angles 6, and o,
CM-System

Target and projectile
move

CM - at rest

Only 1 nontrivial
coordinate

and 1 angle QC
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Transformation LAB - CM F

Hochschule Aachen

To go from one
system to the
other: add /
subtract v,

This implies:

Angles change, solid
angles change ...

Formula for the energy of the scattered particle in elastic scattering:

A(a,a)A - —2
—-| cosO, + c0526L+(%j -1
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“Moderation” (here proton neutron) F
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Assume mono-energetic neutrons (E=100a.u., 100000 neutrons)

After 1st collision distribution = box

After 2"d collision each bin (here 1 a.u.) boxueuron-rrotwon

100000

And so on...

Only few collision .
needed to
concentrate
intensity at low
energies

(18 from 3 MeV to
25 meV)

0,01

Energy (a.u.)

More complicated if cross section ——istcollsor =21 31 ——4m
non isotropic
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Neutron Detection F
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Neutrons are indirectly ionizing radiation!

Detection uses interaction of neutrons with detector material

10 7, .*
B(n,,o)" LI =2.31MeV exc.state 96%
(M) LEQ 10 _3840b

Thermal neutrons 10 B(nth,ot)7 Li Q=2.79MeV g.5.4%

Some usefull reactions: OLi(n,, )T Q=4.78MeV c=940Db
3He(n,, p)T Q=0.764Mev O =2330D

"Acyn,,y) (v+conversionelectrons) ~ © =2520D
235 (n,,, fission) G =525b

Detectors must discriminate against other radiation (Gammas!)
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Thermal neutrons F
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Ionization (fission) chambers - walls with 23

Proportional counters - walls loaded with material
- counting gas 3
99 He, BF,

Scintillators e.g. CdTe, Li-glass = up to 8% Li content
Solid state (Li-sandwiched)

Gamma Discrimination due to pulse height:
Energy of fission products around 100 MeV
Energy of heavy ions around 1 MeV

Energy deposition of Gammas some keV!
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Fast neutrons F
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Mainly the recoiling nuclei are detected
Proportional counters — counter gas: Hydrogen, Helium..

Scintillators mostly plastic scint. for recoiling protons

Gamma discrimination more serious:
Prop. counter

- recoil protons — high efficiency requires measurement of low energy
protons — low threshold in energy

Scintillators

- as above + light ouput low for heavy ions / compared to electrons

Solution — Pulse shape discrimination
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HIGH-VOLTAGE
PURTEL Anode Signal Unipolar
to CFD for Output
I > Time Spectroscopy
/ 552
265 = 13 P 460 s PULSE SHAPE
" | PREAMPLIFIER

Neutron-Gama Discrimination Experiment

pulse . ¥ 810° [ Neutron Energy 3 +0.5 MeV

Gamma Discrimination : el ot Pl
: : : height | .| ]
using the time behavior |
il gamma | § | — .
of the scintillation

<€————— Neutron SCA Window ————>

process.
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Dosimetry F H
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Mostly thermal Neutrons are detected

In many dosimeters proportional counters are used (®He
and BF,):

PB+n— [Li+,He
Sometimes counter
walls loaded with

5Li, Gd or 23°U

3 3
He+n—>H+p
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Personal Dose using Albedo Dosimeters (TLD)

Germany

If neutrons contribute
to effective dose more
than 10% the use of
Albedo dosimeters is
recommended

1 FrontXliew, 2 casette with 4-TLD , 3 Rear view with

albedo window
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Detector measures H,(10) from Photons and Neutrons

Bor plastic - shields TLD from thermal neutrons
Photon detection

TLD pairs of SLiF and 7LiF material

Thermal neutrons: °Li+th —— o +3H
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Electronic Dosimeter EP D2Can be used for
measurement of H (10) from neutrons

Albedo and low

fast neutrons energy photons

High energetic
photons

e

3 Si-diode detectors so G &

H
Fasl Meutron Aol Ml Gamma
Detactar Detectar Elernent Deateior
|
r
=J ! M
T:) o (JC-—-\_ ,,—--—.\L 2
Al MEREERTRME L "I_ T
arg In mm ]I,!E_ A
142 145 ]
1

Abb fo: Technische Zeichnmung aus dem englischen Bennizerhiandbuch der Firma Stemens
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Ambient Dose from Neutrons .
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Moderator

BF3- prop-
counter in
the center

Response of the detector must be
proportional to the neutron dose rate

,Remcounter*
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Quality factor of n-
radiation rises
steeply between

7 10 keV and 10 MeV

-.._/ Rem response ICRP
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Sensitivity of the rem-
counter follows this curve
due to Boron absorber
reducing the response to
thermal neutrons
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Neutron Flux Measurement F

Hochschule Aachen

Most methods rely on activation: ~ X (n, ) **X

If flux not too high (and/or cross section not too big)
Production rate is nearly constant: R=oc-N- %

Resulting activity of dN, () =R —AN, (1)
- 2

radioactive product nucleus

Aktivierungskurve

At)=A-N,(t)=R-(1-e™)

Activation curve

After 3 Half-Lifes roughly 90% of
maximal attainable activity is
T2 reached

relative Aktivitat
o000 0000o
OFRLPNWPAUIITONOO B
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Very common choice of reaction for thermal flux

7 Au(n, 7)'*Au, o, =98.5b, T, =2.7d, E, = 411, 79keV, | = 95.5%

“Cadmium ratio”: Measure the activiation with bare foil and foil covered
with Cadmium (thick enough to absorb all neutrons with E<0.4 eV)

- measure of the thermalization of the neutron spectrum

Other probes, to cover other energy ranges

Threshold reactions for fast neutrons:

€.9. 23Na(n, CZ) ZOF, T1/2 =11s, Ey =1,63MeV, E'[hreshold ~MeV,

(n,y) on Na has been used in Tokaimura

In reactor-instrumentation: Chain with Hf (or In) spheres along the
fuel elements. Measures vertical flux distribution

Not useful for transients since long delay
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Continuous flux measurement using SPN - detectors
(SPN - self powered neutron detector)

0.062 in. dia. 3 }
l Mgo 0.040 in. di

@ =
Rhodium wire (emitter)j /\/

: Inconel sheath
Inconel lead wire

Collerl r
SIS 88.% ’

SUOMNUONNNNNINNNNNNN

N
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B-from emitter reach
collector

— current between
emitter and collector

Standard
event for
operation
with thermal
neutrons

Used in reactor
instrumentation
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Material Cross Half-Life/s | Typical
Emitter section/ currents/
materials: barn A/(n/cm?2s)

Vanadium |[4.9 5x10 23

Rhodium 139 44

and 1x10 21
11 265

Time behavior after
“shutdown”

- response time depends on
half-life of activation product

Using Rh: Flux of 1013 n/cm?2s gives
current of I = 10 nA
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Ionization Chambers for Flux Measurement
Counting only for very low flux range possible (dead time)

-Ionization chambers are used in current mode

Reactors after shutdown have very high activity levels
Thus high levels of Gamma-background

[ Discrimination using
B9 L fied * Identical COmpensatiOn

ion chamber l unlined

Wi, (difference = neutron signal)

or

Look at rms-of current signal:

Current

R T Fission event produces about 3
orders of magnitude more
lS'gnal charge than gamma event!

L — I,
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Fast Neutron Spectroscopy F
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Spectroscopy of slow or even ultra cold neutrons not topic of this talk

3 main methods to determine neutron energy spectra:

i) Measure thermal neutrons, using several detectors with different
efficiency for different neutron energies:

“Bonner spheres”

Central 3He-Prop Counter
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Big moderators sensitive to high energies

Deconvolution: Find original spectrum from the measurement

Measurement: Convolution of spectrum S(E) with response R(E,,E)
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Bonner sphere count rates N.: of cam paign "

corrected to air pressure p = 1004 .4 mbar hare

different combinations of spheres, —4Ps7

each averaged over7 days

-1
N, /(3600 s —

O = N W B o0 O ~ O O
L L 1 L L I 1 L L

1 1 1 1
Lol
6 6 & ’{L_o“'-’}. r?’e.og}.o'b?

Sphi measured neutron spectrum

) PTB, 99/12 - 00/01
Counts in the

spheres

Program
MAXED

o.(E).E I (em’h') —

0 T

10°10°10710°10°10* 10° 107 10" 10° 10’

L L L T L L L T L T L T
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E IMeV —
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b Cd ——3"to18"

—— 357 ——4CH 7

4PE A

e

0®10* 10° 10°

En { MeV¥ ——

Response of
spheres

M. Matzke: Unfolding of Pulse Height
Spectra: The HEPRO Program
System, PTB Report PTB-N-19, ISBN
3-89429-543-0 (1994).
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ii) Use the kinematics of elastic scattering

Energy of the recoil nucleus A

Recoil of the protons
after 1 collision

»

E, = A —(cos® 0)E,
(1+A)

frequency

For proton:
energy between 0 and E, ,
since A=1

N\

D
I
O
o

o
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<= Nonlinearity

S= 2.6 Mev

annel

Counts per ch

1§t-scatter on C

Double scatter

,resolution®

= 2.6 MeV

Counts per channe|

\

Fo—=

I
100 150
Channel

Real measurement for 2.6 MeV
neutrons

Distortions to the ideal
response
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Blue-inset:
measured
response of
liquid
scintillator
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Example of PTB: dd- and dt-reaction in JET (Culham)
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If Scintillator, H, or “He prop. counter is used - these “boxes” are
obtained (isotropic angular cross sections)

Again deconvolution is required (In Germany - ask PTB)

Measured counts at pulse height h:
Convolution of spectrum S(E,) with response R(E,,h)

Tedious but straightforward for Thin hydrogenous
directed neutron beam: Neutron radiator

Proton recoil detector

Here: the energy of each neutron
is measured individually using the
kinematics

AE detector

E detectc

Requires a “start” signal either
from pulsed accelerator or from Ay

.y . To coincidence
scintillating target. and summing circuits
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iii) TOF (time of flight measurement)

Using the nonrelativistic formula
one finds for a 1 MeV neutron:

It takes roughly 75 ns for 1 m
flight

One needs a (fast) start signal.
(Pulsed accelerator or
associated particle in a (d,t)-
generator)

Electronics for TOF
spectrometer including the
Gamma-discrimination
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My favorite book
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TION

eAtoms, Radiation, and Rad. Protection, James E. Turner

eNuclear Physics, John Lilley

eOrtec catalogue of 1995

e Canberra Eurisys catalogue (CD-rom)
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Thank you for your attention
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