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1. Introduction

In the framework of classical mechanics the first equation of B,B.G.K.Y. hierarchy
gives an exact and detailed microscopic description of a dynamical system. Even if this
equation cannot be solved exactly, it still plays an important role insofar as it is the
starting point for the derivation of the kinetic and momentum equations. We recall that the
thermodynamic and the fluidodynamic equations provide a macroscopic description of
many physical processes, yet it still is essential to establish the limits of their validity and
to understand the approximations inherent in them,

The kinetic equation is useful to set these Hmits because the macroscopic equations are
a reduced (or integrated) form of it. The purpose of this paper is to derive the second law
of thermodynamics beginning with the first B.B.G.K.Y. equation, or derive the
Boltzmann equation. Resorting to the II theorem it follows that the evolution of the
entropy S is given by [11, [2]

%—§+6-}:=G
where
— — -
: Js=jR3vflnfdv

and ¢ is the entropy production. From this equation we will obtain the Clausius

inequality that expresses the second law of thermodynarics,

2. Clausius' Inequality

Starting from the kinetic equation 33, [4]

5 .
of 2 dJf F dof of
E+v.7+a.7:(a}coﬂ (1)

-
where the r.h.s. takes into account the collision effects on the distribution function f (r,

-
v; t), we consider a system of particles interacting with each-other.

For the moment, we do not specify the r.h.s, term, which could be the Boltzmann
collision integral, the Fokker-Plank collision term, or the BBGK'Y term depending on the

N

1M

two-particle distribution function.

According to Boltzmann's theory, the entropy S is defined as S = - K Hy [4], with k
the Boltzmann constant and

Hy = L Hdr @

where

| 2
H= [ flnfdv (3)

is the Boltzmann H function,

Relation (2) gives the space integration of the H function extended over a volume V.
Thus the expression S = - k Hy gives the average value of the entropy in the volume V.,
From Eqs (1) and (3) it follows that:

oH J' o o o F oo | o
= Je, (1410 D) (ﬁlon' VoS- oo Say, @
or v

where last term in the above expression, i.¢, the integral proportional to the force F,

k) . _) . . ——)
vanishes if F is independent of the velocity v, is the S%‘mc as that in ref, [4], \
We will extend this statement 1o the case of Lorentz force .

.
F=qE+qvxB, ()

. —>
5o that the effects of an external magnetic field, B, do not influence the fime evolution of

- . =
entropy. In fact, in this case, each component Fy, of F, with i = x; y; z, does not depend

N
on the component v; of the velocity v, and consequently

2 =
<. F-=o 6
av
We also observe that
- = = -
F(v) of = F(v df, -
J;g (Lemp E00 I g7 'L Ly) ~—§(f1nf) dv =
v dv
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Taking the logarithm of (12} we get
=-lJ. flnf 2 . F(v)dv =0. ) £

m JRj3 a'—>
v

Inf =Infp+In{l +dy) , {13

This result has been obtained by integrating by parts and observing that \ recalling that
+o0
|£1n 1], (8) m - me?
- Infgzinn+%ln ZTET'IZTL_CT . (14)

t vanish f h t of the velocity under " 1 conditions". Thus, for the I L ‘
maust vamish for each component of the velocity under "normal condi and substituting the term In £ appearing in the integral in B (1) with Eqs (13) and s

Lorentz force, Bq (7) vanishes since Eq (6) is obeyed. we obtain

Considering now the second term on r.hs. of Eq {4), we introduce the peculiar

e -
velocity ¢ = v - v, where vq is the mean velocity of the particles given by g - - d J‘ AP 3
9 _9 m - -
a% Rsc flnfdv = - {lnn R3C fdv + Elnm R cfdv +
Loy J. oL T or
vo = Ry v f({v)dv €)]
1 -1 - -
ond _ﬁjRg cimczfdv+J-R cfln(1+<1)1)d:r) } (15)
. 3
n = J fdv (10)
Ra
Observing that the mean value of the peculiar velocity is zero, the first two integrals on

is the number-density. We have the r-h.s. of Eq (15} vanish, whereas the third term is equal to

-3 ] - o — — el - — -
Rsv':(flnﬂdv=:—- szoflnfdv e R:Acflnf(iv = q
Jr or or kT (16)
-
- - - :
- % ) (Vo H) n %_ ) J-R3C finfdv . a1 where q is th_e heat flux defined as
ar or
- - ]. —
A q = -Ls ¢ 5 me2fdy. an
The first term on the second line of (8) represents the variation of the function H due to '
the presence of the mean velocity \?0 (i.e. an open system), whereas the meaning of the Moreover, if we assume
second term will be now elucidated.
Writing the distribution function as f)
d; = E << 1, (18)
f=1fh+f; = o+, (12) we have
. _ . - . In(1+®) = 3 (-1yp+ 3 = ®, (19)
where fj is taken to be a local Maxwellian, we observe that the distribution function can p=l .

always be written in thi-form, without making any assumption concerning the function

o, and the second term on the r.h.s. of Eq (4) becomes
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2 94 . 2 =
%-Jumm?’ S ) JRCERE R I (20)
ar or or or
where
6’1=L cED; dy. 21)
3

The last two terms in Bq (20) concern the divergence of the heat flux and the

=7 . 1 . - "
divergence of the vector ¢;, which takes inte account the "flux of the distortion" of the

distribution function in comparison with the local Maxwellian,
In order to obtain the time evolution of the entropy of a system with volume V, we

- - »
will integrate each term of Eq (4) with respect to v . According to the divergence theorem

—3 - - ~
J‘v%‘(vGH)dr =L Hvg - ndE, (22a)
I
- -
. 947 - | L4 22b
.[v_:)'der_ > kT ndx (22b)
Jr
and
—3 = ~
_[ iwpld?’:j o - ndx, . 22¢)
v z

ar

A +
where X is the surface surrounding the volume V, and n is the outward unit vector
normal of element dZ.
Finally, we obtain

.
— Fa A Ed A
%—f-kLHvo-ndG+L%~nd0-kL(I)l-ndZ

- =
= -k_[(l +1n £) %)mudv dr. (23)

5
If we take as the Boltzmann integral, the collision term assume vg = 0 (closed system,
g a
the matter is conserved [1], [2]), and neglect the flux @1 (local Maxwellian

approximation for In f), Eq (23) reduces to
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5
B LK | A (fFy fi)gbdbdgdvpdvdr = - | 4. A 4)
ata g ¢ 5 &

By virtue of the Boltzmann H theorem, the second term on the Lh.s. is either negative
Or Z€ro, SO

Sl
%FZ',L%@:’ (25)

which is the Clausius inequality, or the second law of thermodynamic. In fact, if q; <0
(heat flux entering into the closed system from its environment), the r.h.s. of Eq (24) i3
positive and Eq (25) must be obeyed.

On the contrary,.if qu > 0 (heat flux outcoming from the volume V), the r.h.s. of Eq

(24) is negative and then 98 can be positive, and then Eq (25) is true, or it can be
ot

negative, However
) J. g1
E‘) < )5 T dx.

Consequently, Eq (25) is obeyed also in this case. Finally, if f is the Maxwellian
distribution, the collision term vanishes and the equal sign applies.

Hence, we have proved the existence of the inequality given by Eq (25), which
expresses the second law of thermodynamics, starting from Boltzmann equation.
Moreover, we have shown under what conditions Eq (25) can be obtained.

3. Clausius Ineq.uality for a Fully Ionized Plasma

In the previeus section, we derived the equation of the time evolution of the entropy
for a single gas and, in particular, the Clausius inequality has been demonstrated under
the hypothesis that the Boltzmann collision integral is a suitable approximation. This is
certainly true for a perfect gas,

Now we wish to demonstrate the Clausius inequality for a fully ionized plasma (of
only one type of positive ions with Z = 1) which - we recall - is not a perfect gas.

The kinetic equations for electrons and positive ions are
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o - o Fa B af ar
or v
and
- —
ff - oft FEt+ Bt oft £+
A4y 'ai*JrT'**:@aF)mu 26b)
ar

- —¥_ - _
Whereas respectively the forces F* refer to the external fields, the forces F' are the

self-consistent forces (Vlasov forces) given by

= jv ]_3)33 (n"-n") d? {27a)

and

- jv Fy (0 - o) dr. (273)

= = o ‘ :

Fg. and Fj; are the Coulomb forces for electron-electron and ion-ion ingeractions
tespectively. These expressions can be obtained on the assumption that the particles are
not correlated; that is, the two-particle distribution function 2 is given in terms of the

product of two one-particle distribution functions [5], [6]

- = 2 - = — =
B (ry, 1o, vi, Vo, 8=V (ry, vi, 0 (ra, v, . (28)

The r.h.s. of Egs (26) takes into account the change in the distribution function due to the
short-range collisions; i.e. the binary-collision rate, which is appropriately described by
the Boltzmann collision integral.

Hence, in a plasma, the interactions have been properly divided roughly into two parts
[5], [7]: one part, given by the self-consistent forces E', due to the long-range multi-
particles interactions, and the other part connected with the short-range binary collisions.

Following the same procedure as in section 2, Eq (2) becomes
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Qlij Y o b Toa i R
A IR
dr dv

for electrons and

—
r ov

oH* j il = pft —f:+ " %.Jr ot
v £ of
a = Jg, 1+l ){[ )cou' V- ; M dv (29b)

for ions.

Since F are electrostatic forces, the mdcpendent of velocity and the terms

proportional to the forces, again, vanish. Thus, Eq (23) for electrons and ions can be
written as

-k_[ 1+ o £ ( ) vdr
( n i) o dv dr, (30a)
E j + 704 A J. o A =, A

o "k Jp H'vo'on dza | %-n dZ-k | @0 dz=

_ f (1 +In £%) (%)\ dv dr : (30b)

. . —
For the case of vanishing average velocities, vy = \T(;J“ =0, and In £ approximated by
a local Maxwellian distribution, Eq (24) becomes

as kJ‘ £f
]ﬂT.(f -ff3) g bdbdgdvpdy dr +

kJ‘1 -
n -(f - fafE) g bdbd(pdedvcdr—~ & ‘0 dz, (31a)

and
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98"k 18 gt - ety gt b d bd @ dve dv dr +
L jl erij( c-ticg

et

- - A
+1§J In g—‘—(fgfa'-fgfé)g'mdbd(pd?cdv];dr =-L-9T:-n 4z, (31b)
C

where we assumed that the Boltzmann integral collision describes binary collisions [.4]‘
We observe that, in general, the electron temperature T is different than T* {the ion
temperature), T™ = T, as a consequence of the heat flux and the external forces.

Now, recalling thar the entropy is additive, if § = $™+ $* is the entropy of the plasma,

in addition to Eq (31a) and Eq (31b), we obtain [4]

as k{Jln £ gy re3) g bdbdodvpdvdr +
Ifl
5 3 o
_[m (f’f'f+ PRy gt thdbdodvedvdr ¢ o+
+15j1n Bﬁ (G - ffE) g *bdbd pdvedvpdr =
f 1]
B EE T .

Since the three integrals on the Lh.s. of Eq (32) cannot be positive, it follows that

ol B

which express the Clausius inequality for a fully ionized plasma.

1]

(2]

(3]

[4]

(5]

(6]

{7
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