

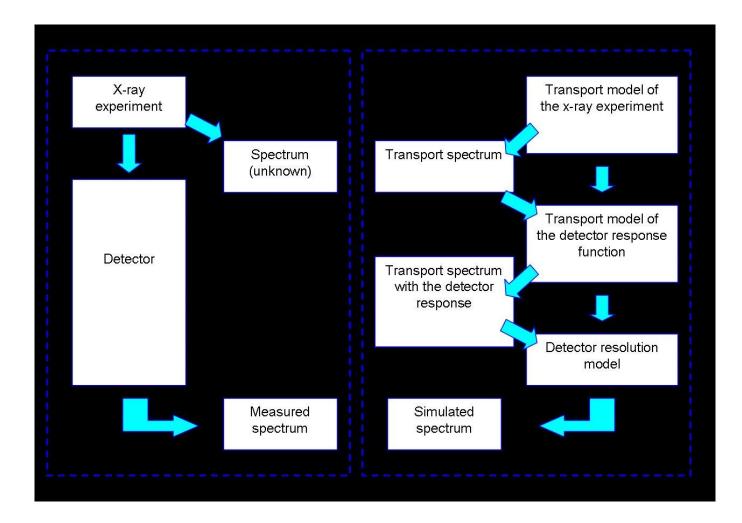
Worked example using MCSHAPE

Viviana Scot

Laboratory of Montecuccolino-DIENCA Alma Mater Studiorum University of Bologna

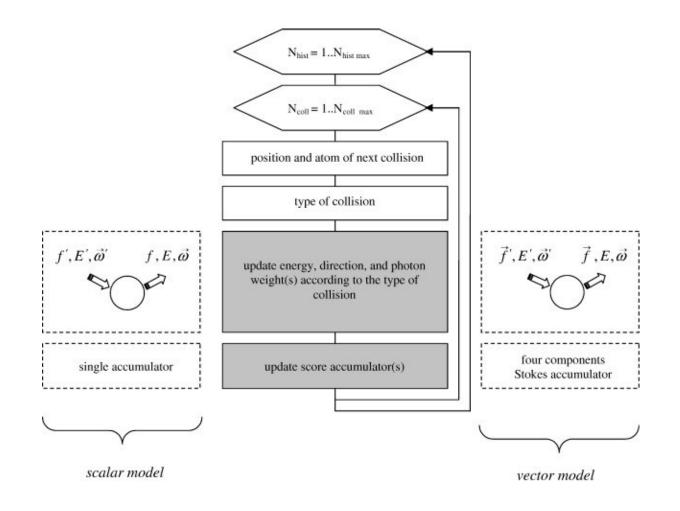
ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI

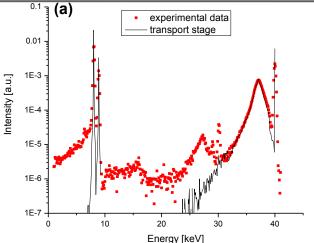


MCSHAPE

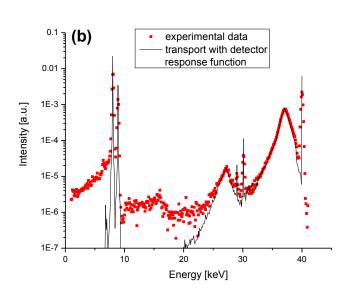
- MCSHAPE is a Monte Carlo code developed at the University of Bologna which can simulate the diffusion of photons with arbitrary polarization state and has the unique feature of describing the evolution of the polarization state along the interactions with the atoms.
- The adopted transport model is derived from the so called Boltzmann-Chandrasekhar 'vector' transport equation. The polarization state of the photons is described by using the Stokes parameters I, Q, U and V, having the dimension of intensities and containing the physical information about the polarization state.
- This code simulates the propagation in heterogeneous media of photons injected by either polarized (i.e., synchrotron) or unpolarized sources (x-ray tubes).
- Website: http://shape.ing.unibo.it

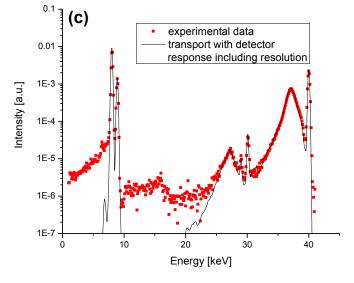


Schematic diagram of a simulation with MCSHAPE, compared with the experimental steps for a spectrum measurement.



Differences between the computational structures of scalar and vector MC models

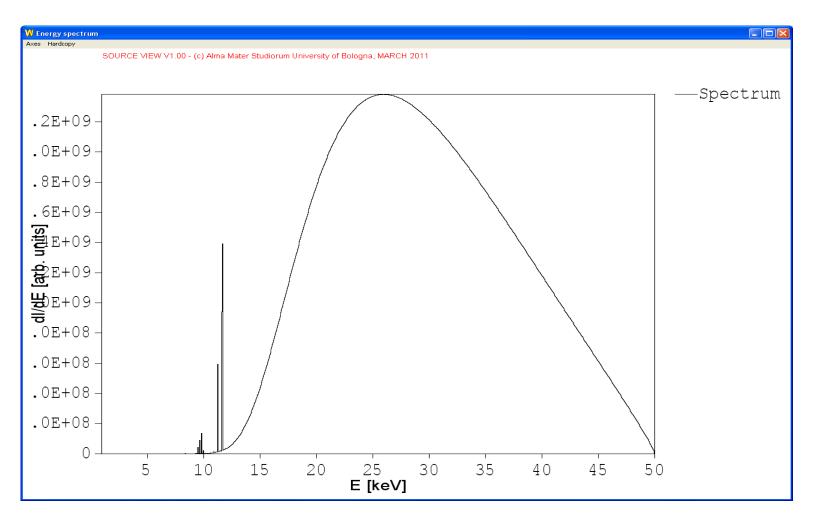




Comparison with experimental data (synchrotron experiment)

- Sample: Cu
- Energy: 40 keV
- Linearly polarized source with polarization degree P= 0.885
- Scattering angle: 90°

Simulation of the x-ray tube spectrum


Hamamatsu Tube with glass window operated at 50 kV

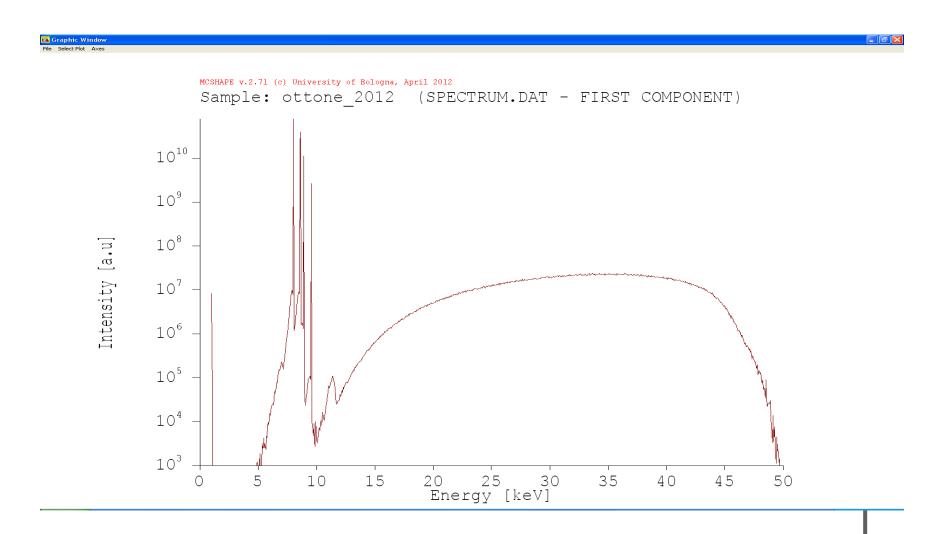
Glass Composition:SiO2 (silice)70%Na2CO3 (soda)15%CaO (calce)10%B2O3 (altro)5%

📕 X-ray tube V1.10				
File Help Exit				
-X-ray tube properties				
Voltage [KV] - max 100 KV	50.000	Tube current [mA]	1.0000	
Anode atomic number (1-92)	74	Electrons incidence angle [DEG]	90.000	
X-rays take-off angle [DEG]	30.000	Be window thickness [cm]	0.0000	
Solid angle [RAD]	1.0000	Distance in air [cm]	5.0000 View	
⊢ ⊢ Filters				
F #1	# 2	□ #3	□ #	4
Mixture of compounds				
EL Z Conc Si 14 0.32720 O 8 0.50373 Na 11 0.65072E-0 C 6 0.16999E-0 Ca 20 0.71469E-0	EL Z Conc	EL Z Conc		
Density [g/cm^3] 2.1300 Thickness [cm] 0.20000	Density [g/cm^3]	0.0000 Density [g/cm^3]	0.0000 Density [g/cm^3]	0.0000
)
Continuum resolution Energy [keV] Lambda [A]	0.50000E-01 + 0.10000 +	Calculate		Exit

X-ray source

Simulation of transport in brass

- Source: SpectrumS_MCSHAPE.dat Hamamatsu x-ray tube at 50kV
- Target: brass_2012


Cu 64 % Zn 36 % density 8.5 g/cm³ thickness 0.05 cm

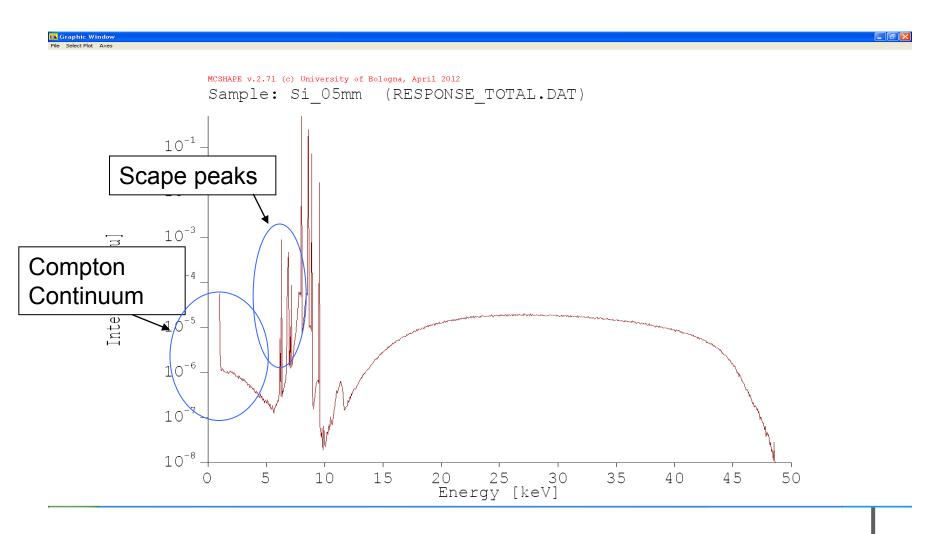
• Geometry: geo45_45.DAT scattering angle 90 degrees

🚺 MCSHAPE v. 2.71	X			
Calculation type Transport in the target Detector response				
Simulation Number of histories 1000 + Number of collisions 4 + (MAX 100)				
Output energy resolution E min [keV] 1.0000 E max [keV] 50.000 Channel width [keV] 0.50000E-01				
Transport model Vector Model Scalar Model Input				
Target D:\multiscat1\simulazio View Source D:\multiscat1\simulazio View Geometry D:\multiscat1\simulazio View				
view run.log view mcshape.log START Plots About Exit				

Transport in brass

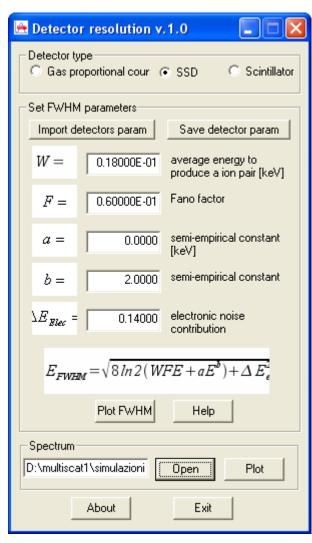
Computation of the detector response

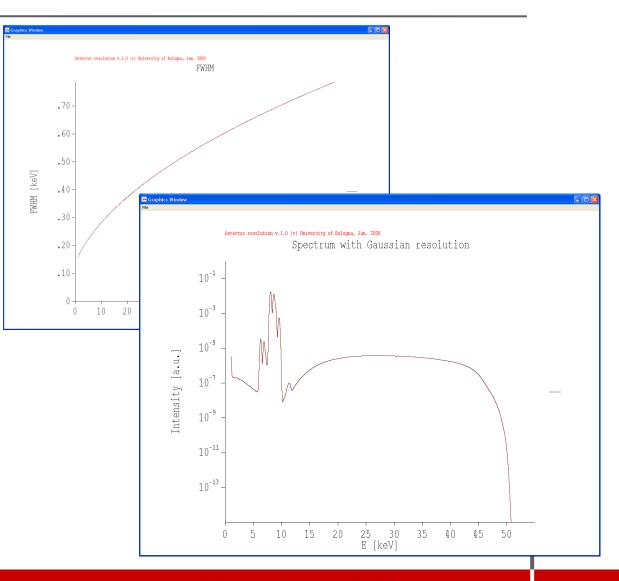
- Source: S_ottone_2012.dat
- Target: Si_05mm


Si 100 % density 2.33 g/cm³ thickness 0.05 cm

Geometry: photons undergone normal to the detector

🔯 MCSHAPE v. 2.71 🛛 🔀				
Calculation type				
Transport in the target				
Detector response				
Simulation				
Number of histories				
Number of collisions 4 + (MAX 100)				
Output energy resolution				
E min [keV] 1.0000				
E max [keV] 50.000				
Channel width [keV] 0.50000E-01				
Transport model				
Innut Target				
D:\multiscat1\simulazio View				
D:\multiscat1\simulazio View				
Geometry				
view run.log view mcshape.log				
START Plots About Exit				




Let us analyse the detector response

Detector Resolution

Comparison with a measured spectrum

4000 Very good agreeement dati for the peak ratio simulazione 3500 The background is 3000 slightly greater in the measurement... 2500 Perhaps the wood 2000 support behind the brass is missing! 1500 1000 500 n 8 10 12 14 6