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Outline

• Description of x-ray emission

• Detector modification

• Detector response function.

• Detector resolution



• X-rays penetrate deeply into the matter, and, in a thick 

medium, give place to a phenomenon known as multiple 

scattering (i.e, multiple collisions).

• Multiple scattering models use the prevailing interactions in 

the x-ray regime to describe the radiation field.

• Another important factor modifying the radiation field is the 

polarization.

MULTIPLE SCATTERING IN X-RAY 

SPECTROMETRY 



The full description of the radiation field requires the modeling of 
coupled photon-electron transport
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Multiple scattering is described using 

the Boltzmann transport model

The photon interactions are depicted with the interaction 

kernels ki



MCSHAPE
MCSHAPE is a Monte Carlo code developed at the University of Bologna which can 

simulate the diffusion of photons with arbitrary polarization state and has the unique 

feature of describing the evolution of the polarization state along the interactions with 

the atoms. 

The adopted transport model is derived from the so called Boltzmann-Chandrasekhar 

'vector' transport equation. The polarization state of the photons is described by using 

the Stokes parameters I, Q, U and V, having the dimension of intensities and 

containing the physical information about the polarization state. 

This code simulates the propagation in heterogeneous media of photons injected by 

either polarized (i.e., synchrotron) or unpolarized sources (x-ray tubes). 

• Website: http://shape.ing.unibo.it

Monte Carlo code describing the diffusion of 

photons with arbitrary polarization state



Simulation with MCSHAPE (only photon

transport)
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The full description of the radiation field requires the modeling of 
coupled photon-electron transport

X-ray production mechanisms from 

coupling terms



The Boltzmann transport model needs to be modified

to include the electron-photon contributions

MS is better described using the 

modified Boltzmann transport model
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Simulation with MCSHAPE (comprising

electron-photon coupling terms)





Outline

• Detector modification:

• Detector response function.

• Detector resolution.

J.E. Fernandez, Viviana Scot: Simulation of the detector 

response function with the code MCSHAPE. Radiat. 

Phys. Chem. 78,(2009) 882-887

J.E. Fernandez, Viviana Scot, L. Sabbatucci: A 

modeling tool for detector resolution and incomplete 

charge collection. X-ray Spectrometry 44 (2015) 177-

182

• Description of x-ray emission



Detector Response

(Detector influence on radiation measures)

The measured spectrum is given by the following 

convolution product:

Where

                        is the response function

                        is the detector efficiency

                        is the original spectrum
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Model of detector response

   is the energy deposition spectrum

is the detector resolution   
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Energy deposition spectrum

• It is built by computing the escape spectrum distribution

• In a first approximation its integral is normalized (really 

is not because of the Rayleigh scattering)

• It can be calculated by using a MC code

MCSHAPE

Computes

the energy

deposition 

spectrum



What is computed with MCSHAPE?
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J..E. Fernandez, V. Scot : Simulation of the detector response function with the code MCSHAPE, Radiation Physics and Chemistry 78 (2009) 882–887.



Complete simulation comprising

detector response (no resolution)



Detector resolution

In a first approximation it can be 

described by a normalized Gaussian

the FWHM is a function of energy
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Complete simulation comprising detector 

response (Gaussian resolution)



Resolution including incomplete 

charge collection

Tail and shelf below a Gaussian line. 

Functional parameters are specific to a single detector 

A more refined version of RESOLUTION includes, for a solid state detector, the

effect of incomplete charge collection.



RESOLUTION Example: CdTe response function

CdTe detector response function computed with

MCSHAPE [1] for a source of Co57, with emission

at 14.41300 keV (9.16%), 122.0614 keV (85.60 %)

e 136.4743 keV (10.68 %).

J. E. Fernández, V. Scot, L. Sabbatucci: A modeling tool for detector resolution and incomplete charge collection, X-ray Spectrom. 44 (2015)177-182.



Complete simulation comprising detector 

response (modified Gaussian resolution)

pulse pile-up

Detector parameters
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Pile-up correction vs complete simulation

The measure 

has been post 

corrected with 

the code 

DRPPU to 

reduce the pile-

up effect.

L. Sabbatucci, J.E. Fernández, First principles pulse pile-up balance equation and fast deterministic solution. Rad. Phys. Chem. 137 (2017) 12-17.

.



Conclusions

The complete explanation of an X-ray spectrum requires several steps:

1) To use an adequate simulation tool capable of describing the 

physics to a higher extent

2) To perform an adequate simulation of the detector response

3) To describe well the resolution of the detector

4) Sometimes you discover that pulse pile-up is still present and 

measurements need to be corrected



Thank you for your attention!

jorge.fernandez@unibo.it
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