

APPLICATIONS OF MCSHAPE TO DETECTOR RESPONSE COMPUTATIONS

J.E. Fernandez^{1,2} and V. Scot¹

¹Laboratory of Montecuccolino, Alma Mater Studiorum University of Bologna, Italy and National Institute for Physics of Matter (CNR/INFM)

² National Institute of Nuclear Physics (INFN),

Summary

- Outline of Detector Response
- Examples with MCSHAPE v2.61
- Future developments
- Conclusions

OUTLINE OF DETECTOR RESPONSE

Detector Response

(Detector influence on radiation measures) The measured spectrum is given by the following convolution product:

$$I_{measured}(E) = \int R(E', E) \phi(E') I(E') dE'$$

Where

R(*E'*,*E*) is the response function *φ*(*E'*) is the detector efficiency *I*(*E'*) is the original spectrum

Simple model for the efficiency $\phi(E')$

The efficiency is strightforwardly linked to the probability to interact inside the active volume of the detector.

$$\phi(E') = \exp(-\mu dw) \exp(-\mu dd) \left(1 - \exp(-\mu D(D - dd))\right)$$

Attenuation in the window

Attenuation in the dead layer

Probability of interaction in the active volume

Example for an AMPTEK Si pin detector

- Be window, density $\rho = 1.85 \text{ g cm}^{-3}$
- $d_w = 1 \text{ mil} (=10^{-3} 2.54 \text{ cm} = 0.00254 \text{ cm})$

- Si crystal, density ρ = 2.33 g cm⁻³
- D=500 µm=0.05 cm
- d_d=?

AMPTEK Si pin detector Calculated Efficiency

Model of detector response

$$R(E_0, E) = \int Q(E'', E_0) G(E'', E) dE''$$

is the energy deposition spectrum

is the detector resolution

Energy deposition spectrum

- Is built by computing the escape spectrum distribution
- Its integral is normalized
- It can be calculated using a MC code

Detector resolution

• Is frequently given by a normalized Gaussian

$$G(E_0, E) = \frac{0.9395}{FWHM(E_0)} \exp\left\{-2.773 \frac{(E_0 - E)^2}{FWHM^2(E_0)}\right\}$$

• the FWHM is a function of energy

Detector response computation with MCSHAPE

MCSHAPE v. 2.61		Computes
Calculation type C Transport in the target	Detector response	the energy deposition
Simulation Number of hystories 100000 Number of collisions (MAX 100) 2 Output energy resolution E max [keV] 301.00 Channel width 0.10000 [keV]	Target C:\MCSHAPE\ View Source C:\MCSHAPE\ View Geometry View C:\MCSHAPE\ View	spectrum
Transport model Vector Model C Scalar Model	view run.log view mcshape.log Plots About START Exit	

What is computed with MCSHAPE v 2.61

$$I_{measured}(E) = \int R(E', E) \phi(E') I(E') dE'$$

=
$$\int \left(\int Q(E'', E') G(E'', E) dE'' \right) \phi(E') I(E') dE'$$

=
$$\int \left(\int Q(E'', E') \phi(E') I(E') dE' \right) G(E'', E) dE''$$

computed by MCSHAPE v2.61
computed by postproces or RESOLUTION

EXAMPLES USING BOTH MCSHAPE v2.61 AND THE POSTPROCESSOR RESOLUTION

FWHM for Ge

Ge (1 mm thickness) Source: monochromatic 30 keV

Ge (1 mm thickness) Source: monochromatic 300 keV

FWHM for CdTe

CdTe (1 mm thickness) Source: monochromatic 30 keV

CdTe (1 mm thickness) Source: monochromatic 300 keV

FUTURE DEVELOPMENTS OF THE CODE

Future developments of MCSHAPE3D

- **Treatment of coupled transport of photonselectrons, in particular including**
 - Bremsstrahlung emission (Under study)
 - Inner-Shell Impact Ionization by electrons (Ready!!!)
- In fact, the influence of electrons interactions can:
 - Increase the detected background
 - Increase the intensity of the characteristics lines

CONCLUSIONS

Conclusions

- MCSHAPE code:
 - proper description of photon-matter interactions in the 1 KeV-1 MeV regime (polarization state, multiple scattering)
 - useful instrument in the interpretation of experimental results (using both X-ray and synchrotron sources)
- 3D implementation (only in MCSHAPE3D) permits to simulate:
 - Scanning XRF experiments
 - XRF tomography
 - Scattering experiments
 - Dosimetry applications (taking advantage of the proper description of the angular distribution for polarized photons)

WEB SITE http://shape.ing.unibo.it

