

PHOTON TRANSPORT SIMULATION, INCLUDING POLARIZATION

Jorge E. Fernández

Laboratory of Montecuccolino-DIENCA

INFN, INFM & Alma Mater Studiorum - University of Bologna

DESCRIPTION OF POLARIZATION

WHY POLARIZATION?

By considering polarization we improve the model of photon diffusion

Without polarization photons are considered only as a particles

a good approximation in many cases, but not for phenomena that are influenced by their wave properties

REPRESENTATION OF POLARIZED RADIATION

- Stokes parameters I,Q,U,V (having the dimension of an intensity) can specify the physical magnitudes:
- Intensity of the beam
- Degree of polarization
- Orientation of the ellipse of polarization
- Ellipticity

Polarization state definition

STOKES' REPRESENTATION OF POLARIZED RADIATION

Definition of STOKES PARAMETERS: $Q = I \cos 2\beta \cos 2\chi$ $U = I \cos 2\beta \sin 2\chi$ $V = I \sin 2\beta$ **Degree of polarization:** $P = \frac{(Q^{2} + U^{2} + V^{2})^{1/2}}{(Q^{2} + V^{2})^{1/2}}$

EXAMPLES OF THE STOKES REPRESENTATION

Polarisation state	Set S (I,Q,U,V)	
Unpolarised	(1,0,0,0)	
Linear (generic)	$(1,\cos 2\chi,\sin 2\chi,0)$	
Linear ()	(1,1,0,0)	
Linear (⊥)	(1, -1, 0, 0)	
Linear (45°)	(1,0,1,0)	
Circular	(1,0,0,1)	

COLLISION SCHEME

Modification of the polarization state due to a collision (Stokes representation)

TWO RELEVANT ASPECTS

- A collision always changes the polarization state
- The angular distribution for scattered unpolarized and polarized photons is very different

PHOTON DIFFUSION IS DESCRIBED BY A "VECTOR" TRANSPORT EQUATION (THE 1-D EQUATION IS SHOWN HERE)

$$\begin{split} \eta \frac{\partial}{\partial z} \vec{f}^{(S)}(z, \vec{\omega}, \lambda) &= -\mu(\lambda) \vec{f}^{(S)}(z, \vec{\omega}, \lambda) \\ &+ \int_{a} d\omega' \int_{a}^{\infty} d\lambda' \mathbf{U}(z) \mathbf{H}^{(S)}(\vec{\omega}, \lambda, \vec{\omega}', \lambda') \vec{f}^{(S)}(z, \vec{\omega}', \lambda') \\ &+ \delta(z) \vec{S}^{(S)}(\vec{\omega}, \lambda) \end{split}$$

where

$$\overline{f} = \begin{bmatrix} I(z, \overline{\omega}, \lambda) \\ Q(z, \overline{\omega}, \lambda) \\ U(z, \overline{\omega}, \lambda) \\ V(z, \overline{\omega}, \lambda) \end{bmatrix}$$

VECTOR TRANSPORT EQUATION (CONT.)

where

$$\mathrm{H}^{(S)}(\vec{\varpi},\lambda,\vec{\varpi}',\lambda') {=} \mathrm{L}^{(S)}(\pi - \Psi) \mathrm{K}^{(S)}(\vec{\varpi},\lambda,\vec{\varpi}',\lambda') \mathrm{L}^{(S)}(-\Psi')$$

$H^{(S)}$ = kernel matrix in the meridian plane of reference

 $K^{(S)}$ = scattering matrix in the scattering plane of reference

IMPORTANT PROPERTIES OF THE "VECTOR" TRANSPORT EQUATION

- Describes the evolution of the full polarization state (not only the intensity of the beam)
- Is linear (for the Stokes representation)
- Requires the simultaneous solution of the whole set of transport equations
- Cannot be transformed in a scalar equation !! (due to the coupling in the scattering term)

THEORETICAL MODELS

MODELS

Different degrees of approximation to describe the diffusion photons:

- scalar model: photons never modify an average polarization state
- vector model: transport of photons starting with arbitrary polarization state

Both models follow a multiple scattering scheme

	Photoelectric effect	Rayleigh scattering	Compton scattering	
	(P)	(R)	(C)	
	characteristic lines	Rayleigh peak	Compton peak	
	(discrete)	(discrete)	(continuous)	
b				
	Photoelectric effect	Rayleigh scattering	Compton scattering	
a				
	(P,P)	(P,R)	(P,C)	
Photoelectric effect	XRF secondary	XRF enhancement due to	XRF enhancement due to	
	enhancement	scattering	scattering	
	(discrete on XRF line)	(discrete on XRF line)	(continuous on XRF line)	
	(R,P)	(R,R)	(R,C)	
Rayleigh scattering	XRF enhancement due to	second order scattering	second order scattering	
	scattering		(continuous on Compton	
	(discrete on XRF line)	(discrete on Rayleigh peak)	peak)	
	(C,P)	(C,R)	(C,C)	
Compton scattering	XRF enhancement due to	second order scattering	second order scattering	
	scattering	(continuous on Compton	(continuous on Compton	
	(discrete on XRF line)	peak)	peak)	

Scalar transport equation

Vector transport equation

LET US SHOW TWO SIMPLE EXAMPLES

Scattering of unpolarized radiation
 Scattering of linearly polarized radiation

1) Unpolarized Rayleigh scattering

How scattering polarizes a beam

EFECTS ON UNPOLARIZED RADIATION (SUMMARY)

Unpolarized beam (composed by rays with electric vector randomly oriented around the propagation direction)

After scattering the beam is partially (totally) polarized depending on the type of interaction and the scattering geometry

2) Polarized Rayleigh scattering

SUMMARY FOR LINEAR POLARIZATION

Linearly polarized beam with electric vector parallel to the scattering plane

Almost null scattering at 90 degrees

COMBINING BOTH PROPERTIES

THE CODES

SOLUTION TECHNIQUES

The transport equation is solved using an order-of-collisions scheme

comparable results for deterministic and Monte Carlo solutions

Deterministic vs. Monte Carlo

Solution	Deterministic	Monte Carlo (statistical)
Scope of the solution	Global	Local
Accuracy		
Capability to describe the geometry		
Number of collisions		
Developed codes	SHAPE	MCSHAPE

CHARACTERISTICS OF THE CODE MCSHAPE

- Photon transport
- Arbitrary polarization state of the source
- Multi-layer multi-component homogeneous targets
- Monochromatic or polychromatic source
- Doppler broadening (for Compton scattering)
- Full description of the polarization state
- N-collisions
- 1D and 3D versions

COMPARISON WITH SCALAR VERSION

The source is unpolarized and monochromatic. The sample is carbon and and the scattering angle is 90°.

WEB SITE http://shape.ing.unibo.it

These codes are going to be distributed by NEA Data Bank (OECD) and RSICC (US-DOE)

CODES COMPARISON (part 1: Physics)

Features	Details	SHAPE v2.20	D3DSHAPE v1.0	MCSHAPE v2.61	
	photoelectric effect	\boxtimes	×	\boxtimes	
	~1000 characteristic lines	\boxtimes	X	\boxtimes	
	line width	X		X	
	atomic Rayleigh scattering	X	X	\boxtimes	
	atomic Compton scattering	X	X	\boxtimes	
	Compton profile	first collision only	\boxtimes	\boxtimes	
	electron bremsstrahlung	foreseen in v3	X	foreseen in v3	
	open data bases	X	X	X	
	user defined elements			foreseen in v3	
	infinite thickness targets	X	X	X	
Physics	finite thickness targets		X	X	
	multilayer targets			X	
	polarization representation	Stokes		Stokes	
	source polarization state	linear/ unpolarised	unpolarised	arbitrary	<
	calculated spectrum	intensity component only		full polarization state	
	monochromatic source	\boxtimes	\boxtimes	X	
	polychromatic source	postprocessor		X	
	external detector	solid state Si/Ge		foreseen in v3	
	reflection geometry	X	X	X	
	transmission geometry			\boxtimes	

UNIQUE FEATURES!

CODES COMPARISON (part 2: model and programming)

Features	Details	SHAPE v2.20	D3DSHAPE v1.0	MCSHAPE v2.61		
Miscellaneous	Detector response	Ge and Si 1 collision escape only photoelectric		arbitrary detector N-collisions escape all interactions		NEW!! Version 2.61
	selective computation of single interaction chains	X	partial	partial		
	particle	photons	photons / electrons	photons		
	scalar equation	\boxtimes	\boxtimes			
	vector equation	\boxtimes		\boxtimes		
Transport model	solution	deterministic	deterministic	Monte Carlo		
	collisions	3	3	100		NEW!! 3D version
	1-D spatial geometry	\boxtimes		\boxtimes		
	3-D spatial geometry		\boxtimes	using MCSHAPE3D	K	
Code	language	DELPHI	FORTRAN 77	FORTRAN 90		
	additional libraries	graphics		WINTERACTER		
	platform	WINDOWS	LINUX	WINDOWS / LINUX		
	distribution	web site	alpha testing	web site		
	parallelization			MPICH v1.0 (only Linux)		
Applications	spectroscopy	X	X	X		
	analytical chemistry	X	X	X		
	radiation metrology	X	X	X		
	x-ray optics			with MCSHAPE3D		
	dosimetry		foreseen in v2	with MCSHAPE3D		
	radiation transport teaching	X	X	X		

3D - MCSHAPE

• TARGET:

- heterogeneus target -> VOXEL MODEL
- interfaced with GAMBIT (FLUENT environment)
- SOURCE:
 - uniform source on a disk
 - uniform source on a rectangle
 - point source

• DETECTOR:

- disk detector
- rectangular detector
- plane infinite detector
- Collimator in front of the detector

3D – MCSHAPE: XRF Tomography

٠

•

- Total dimension: 0.1 x 0.1 x 0.01 cm
- Composition: Region A: C + 0.1%Sr, $\rho = 1.0 \text{ g/cm}^3$ Other elements: Region B: SiO₂ + 1%Fe, $\rho = 2.23 \text{ g/cm}^3$ Region C: SiO₂ + 1%Ba, $\rho = 2.23 \text{ g/cm}^3$ Region D: SiO₂ + 1%Zr, $\rho = 2.23 \text{ g/cm}^3$
 - **Source**: energy: 59.54 keV type: point source unpolarized
 - Detector: type: disk with 30 mm² of total area no collimator

V. Scot, J.E. Fernandez, L. Vincze, K. Janssens, NIM-B 263 (2005) 204

3D – MCSHAPE: XRF Tomography

V. Scot, J.E. Fernandez, L. Vincze, K. Janssens, NIM-B 263 (2007) 204

OPEN PROBLEM #1: COHERENCE

 Vector transport equation behaves linearly only for an incoherent source

 Diffusion of coherent radiation is not considered yet in transport models used to describe x-ray diffusion

OPEN PROBLEM #2: VARIANCE REDUCTION

ACTUALLY:

- Variance reduction on the angular variables is performed using the average kernel.
- The Stokes components are computed using weights.

 — MIXED METHOD
 — OPTIMIZED INTENSITY

CONCLUSIONS

CONCLUSIONS

The vector transport equation for photons (Boltzmann-Chandrasekhar) :

- provides a full description of the polarization state evolution through multiple scattering collisions
- provides a correct picture of the radiation field (uses the proper angular distribution)

CONCLUSIONS (cont.)

The vector code MCSHAPE:

- provides a detailed description of multiple scattering for the prevailing interactions in the x-ray regime (for infinite or finite, and single or multi-layer multi-component targets and recently 3D targets)
- gives a full analysis of the final state of polarization at each collision number
- extends the results of the deterministic method to higher orders of collision and arbitrary geometries

CONCLUSIONS (cont.)

- Good agreement with experimental data has been obtained for both, unpolarized and polarized sources
- Foreseen applications in several fields:
 - -x- or γ -ray tomography,
 - -x- or γ -ray dosimetry,
 - solution of the inverse problem using the adjoint trasport equation.