

THE DETERMINISTIC CODE SHAPE

J. E. Fernandez

Laboratory of Montecuccolino-DIENCA Alma Mater Studiorum University of Bologna

Scuola di Specializzazione in Fisica Sanitaria

Spectrum build-up (code SHAPE)

•The first three collisions give the major contribution to the x-ray spectrum •The detector can be simulated with a detailed response function including escape peaks and non uniform efficiency •Polarization state of the source can be: unpolarized/linearly polarized •The spectrum can be digitized to simulate acquisition with a multichannel analyzer as in EDXRF

PREVAILING INTERACTIONS IN THE X-RAY REGIME

Using SHAPE (declaring set-up)

Using SHAPE (declaring target)

<u> </u>			
8 x 12 💽 🛄 🗈 🕻	🖹 🔁 🖆 🖪		
Shape	Set-Up	O ptions	Quit
Geometry θ_0 45.00 ϕ_0 0.00 $180-\theta =$ 45.00 ϕ 0.00 $180-\theta =$ 45.00 ϕ 0.00 Source 0.00 Eo 60.00 d1 0.00 Crystal GE Escape Peak (I) Channels 1024 ZERO 0.00 GAIN 0.1000 LDis 0.00 UDis 1023.00	Define Ic Composition ic 1.H 1 0.1109 2.0 8 0.8800 3.H0 67 0.0091 4. 0 0.0000 5. 0 0.0000 6. 0 0.0000 7. 0 0.0000 9. 0 0.0000 9. 0 0.0000 9. 0 0.0000 9. 0 0.0000 7. 0 0.0000 8. 0 0.0000 9. 0 0.0000 7. 0 0.0000 8. 0 0.0000 9. 0 0.0000 Rest =1.0000 Rest =1.0000	eport e FILE r (1) r (1) r (1) r (1) et (1) (1) et (1) (1) et (2) (1) SHAPE (2) JEF 1 All right Not for com 0.0091 For more inf the Info iss tions tions	v 2.18 989-2002 s reserved mercial use formation see ue under Op-
Choose target comp	osition. [F2] for a f	table of elements	

Using SHAPE (declaring geometry)

🗾 SHAPE - SHAPE			_ _ _ _ _
8 x 12 💽 🛄 🗈	🛍 🔁 🗗 A		
Shape	Set-Up	O ptions	Quit
θo = 45.00 øo = 0.00 180-0= 45.00 ø = 0.00 180-0= 45.00 ø = 0.00 Eo = 0.00 d1 = 0.00 channels 0.00 Gain = 0.00 Polar angle measu Polar angle measu	M Define Target Geometry Geometry Incidence (P) Incidence (P) Polar ang (C,C) (D) (C,C) (D) (C,C) (D) (C,C) (D) (C,C) (D) (C,R) (D) (P,P,P,P) (D) (P,P,P,P,P) (D) (P,P,P,P,P) (D) (C) resets the init [] 0.00 89.99 (D)	<pre>= Report ice FILE -order (1) -order (1) direction SHA gle (00) 1 angle (00=0) (c) JI All ri Not for 0 67 0.0091 </pre>	PE v 2.18 EF 1989-2002 ights reserved commercial use information see issue under Op-

Using SHAPE (declaring source)

🗾 SHAPE - SHAPE				
8 x 12 💽 🛄 📴	🛍 🛃 🖆 🔺			
Shape	Set-Up	0pt	tions	Quit
Bo = 45.00 Øo = 0.00 180-0= 45.00 Ø = 0.00 180-0= 45.00 Ø = 0.00 Eo = 59.54 d1 = 0.00 Eo = 59.54 d1 = 0.00 Crystal GE Escape Peak (I) Channels 1024 ZERO = 0.00 GAIN = 0.00 UDis = 1023.00	M Define Target Geometry Geometry Source (P) Energy State (C (C, C LP (1) (C, R) (1) (C, R) (1) (P, P, P) (1) (P, P, P, P) (1) (P, P, P, P) (1) St. (LP = 0) ed (i.e. 90 degrees	Report ice FILE order () order () order () order () al () Target 1 0.1109 8 0.8800 67 0.0091 	SHAPE v (c) JEF 198 All rights Not for comme For more infor the Info issue tions	2.18 39-2002 reserved ercial use rmation see e under Op-

Using SHAPE (switching interactions on/off)

🗾 SHAPE - SHAPE					
8 x 12 💽 🔅 🖻 🚱 🚰 🗛					
Shape	Set-Up		Options	Quit	
Geometry 80 = 45.00 \$\mathcal{\mathcal{P}_0}\$ = 0.00 180 - 45.00 \$\mathcal{\mathcal{P}_0}\$ = 0.00 \$\mathcal{P}_0\$ - 45.00 \$\mathcal{P}_0\$ = 0.00 \$\mathcal{P}_0\$ - 45.00 \$\mathcal{L}_0\$ - - \$\mathcal{L}_0\$ - 0.00 \$\mathcal{L}_0\$ - 0.00	MS Terms (P) (1) (R) (1) (C) (1) (P,P) (1) (P,P) (1) (P,R) (1) (P,C) (1) (R,P) (1) (C,P) (1) (C,P) (1) (C,P) (1) (C,R) (1) (C,R) (1) (C,R) (1) (P,P,P) (1) (P,P,P) (1) (P,P,P,P) (1) (P,P,P) (1) (P,P) (1) (P,P,P) (1) (P,P) (1)	Report = Device FIL 1st-order (2nd-order (3rd-order (4rd-order (Total (Target = H 1 0.1109 0 8 0.8800 H0 67 0.0091	Interactions (P) (I) (R) (I) (C) (I) (P,P) (I) (P,R) (I) (P,C) (I) (P,C) (I) (P,C) (I) (P,C) (I) (P,C) (I) (R,P) (I) (C,P) (I) (R,R) (I) (C,C) (I) (C,R) (I) (P,P,P) (I) (P,P,P,P) (I) (I) (I) (I) <t< td=""><td>l(I) t (I) reserved rcial use mation see under Op-</td></t<>	l(I) t (I) reserved rcial use mation see under Op-	
FROTOELEGINIC PRO	CONS COMPTON SC	attereu towarus	the detector (continuous,	

Using SHAPE (computing)

🕠 SHAPE - SHAPE					
8 x 12 💽 🖽 🛍 🚱 🚰 🗛					
Shape	Set-Up	Options Quit			
B B B B Compute Plot B B B B B D D T		Line : HO Kα1Total (f2=19.26%) (7.545 KeU)	4		
1 Attenuation	(C) (D) (P,P) (D) (P,R) (D)	Width [eV] = 31.10 Line : HO KB3Total (f2=19.08%) (3.709 KeV)	5		
Eo = 59.54 d1 = 0.00	(P,C) () $(R,P) ()$ $(C,P) ()$	Width [eU] = 33.85 Line : HO Kβ1Total (f2=19.07%) (3.875 KeU)	5		
Detector&MCA = d2 = 0.00	$ \begin{array}{c} (R,R) \\ (C,C) \\ (R,C) $	Width LeV] = 34.47 Line : HO K β 2Total (f 2=19.03%) (5.318 KeV) Width LoV] = 64.60	5		
Escape Peak (II) Chan	(0, N) (1) (P P P) (1)	Line : HO LLTotal (f3= 0.01%) (5.943 KeU)			
GAIN computation is LDis detecto	s completed with r influence	Line : HO Lα2Total (f3= 0.01%) (6.679 KeV)			
Perform spectrum	narra ap accord	ling to multiple scattering theory			

Using SHAPE (plotting)

using SHAPE with a polychromatic source

 create the new directory TEST and move into it; then create the directory SPEC
 in TEST create one *.SET file for each energy bin
 create the file SPECT.BAT FOR %%I IN (*.SET) DO CALL ONEBIN %%I
 create the file ONEBIN.BAT ..\SHAPE %1 1 MOVE 123D.DAT SPEC\%1 DEL DEFAULT.SET

CODES COMPARISON (part 1: Physics)

Features	Details	SHAPE v2.20	D3DSHAPE v1.0	MCSHAPE v2.04
	photoelectric effect	\boxtimes	X	\boxtimes
	~1000 characteristic lines	\boxtimes	\mathbf{X}	\boxtimes
	line width	\boxtimes		\boxtimes
	atomic Rayleigh scattering	\boxtimes	$\overline{\mathbf{X}}$	\boxtimes
	atomic Compton scattering	\square	\mathbf{X}	\boxtimes
	Compton profile	first collision only	X	\boxtimes
	electron bremsstrahlung	foreseen in v3	X	foreseen in v3
	open data bases	\boxtimes	X	\boxtimes
	user defined elements			foreseen in v3
Dhusias	infinite thickness targets	\boxtimes	X	\boxtimes
Physics	finite thickness targets		X	\boxtimes
	multilayer targets			\boxtimes
	polarization representation	Stokes		Stokes
	source polarization state	linear/ unpolarised	unpolarised	arbitrary
	calculated spectrum	intensity component only		full polarization state
	monochromatic source	\boxtimes	X	\boxtimes
	polychromatic source	postprocessor		\boxtimes
	external detector	solid state Si/Ge		foreseen in v3
	reflection geometry	$\overline{\mathbf{X}}$	X	\boxtimes
	transmission geometry			$\overline{\mathbf{X}}$

CODES COMPARISON (part 2: model and programming)

Features	Details	SHAPE v2.20	D3DSHAPE v1.0	MCSHAPE v2.04
Miscellaneous	selective computation of single interaction chains	X	partial	foreseen in v3
	particle	photons	photonselectrons	photons
	scalar equation	X	X	
	vector equation	X		X
Transport model	solution	deterministic	deterministic	Monte Carlo
	collisions	3	3	100
	1-D spatial geometry	X		\boxtimes
	3-D spatial geometry		X	foreseen in v3
	language	DELPHI	FORTRAN 77	FORTRAN 90
	additional libraries	graphics		WINTERACTER
Code	platform	DOSWINDOWS	LINUX	WINDOWSLINUX
	distribution	web site	alpha testing	web site
	parallelization			MPICH v1.0 (only Linux)
Applications	spectroscopy	X	X	X
	analytical chemistry	X	X	X
	radiation metrology	X	X	X
	radiation shielding	X	X	X
	dosimetry		foreseen in v2	foreseen in v3
	radiation transport teaching	X	X	X

CONCLUSIONS

- X-ray photon transport is a good benchmark for transport theory because:
- the transport equation for photons is linear (is analogous to the neutron transport equation)
- the interactions involved are both, isotropic (photoelectric characteristic emission) and anisotropic (Rayleigh and Compton scattering)
- the spectroscopic application obliges to maintain the full energy and angle distributions