

Angular distributions of scattering kernels and 1st-order intensities with the SAP code

J.E. Fernandez, V. Scot, S. Basile, E. Di Giulio, L. Verardi

Laboratory of Montecuccolino, DIENCA Alma Mater Studiorum University of Bologna, Italy

Bibliography

Nuclear Instruments and Methods in Physics Research A 619 (2010) 240-244

Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH

journal homepage: www.elsevier.com/locate/nima

Visualization of scattering angular distributions with the SAP code

J.E. Fernandez *, V. Scot, S. Basile

Laboratory of Montecuccolino, Department of Energy, Nuclear and Environmental Control Engineering (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli, 16, I-40136, Bologna, Italy

Research Article

Spectrometry

Received: 15 September 2010

Revised: 31 January 2011

Accepted: 5 February 2011

Published online in Wiley Online Library:

(wileyonlinelibrary.com) DOI 10.1002/xrs.1315

Angular distributions of scattering intensities with the SAP code

Jorge E. Fernandez,* Viviana Scot, Eugenio Di Giulio and Luca Verardi

- Introduction
- Physical background and mathematical description
- Examples of use of SAP:
 - Angular distributions of scattering differential cross-sections
 - Angular distribution of first order photon scattering flux in transmission and reflection

- Rayleigh and Compton scattering (together with photoelectric effect) are the prevailing interactions for x-rays in the energy range (1-1000 keV)
- In x-ray fluorescence experiments, scattering represents background
- Scattering carries information on the target density (scattering investigation techniques)

- SAP (Scattering Angular distribution Plot) is a graphical tool to compute and plot the angular distributions of the following quantities (involving Rayleigh and Compton scattering):
- electronic angular differential cross-section
- atomic angular differential cross-section
- form factor (FF) and scattering function (SF)
- reflected and transmitted first-order intensities
- Rayleigh to Compton ratio (R/C) for transmission and reflection

Angular differential cross-sections: single element

• Rayleigh scattering

$$\frac{d\sigma_R}{d\vartheta} = \frac{r_e^2 N}{2A} \left(1 + \cos^2 \vartheta\right) F^2(X, Z) \qquad [cm^2/g]$$

Form Factor

Compton scattering

$$\frac{d\sigma_{C}}{d\vartheta} = \frac{r_{e}^{2}N}{2A} \left(\frac{E_{P}}{E}\right)^{2} \left(\frac{E_{P}}{E} + \frac{E}{E_{P}} - \sin^{2}\vartheta\right) \frac{S(X,Z)}{S(z,Z)} \qquad \left[cm^{2}/g\right]$$

Form Factors and Scattering Functions

As a function of the transferred momentum for selected atomic numbers: from 21 (Sc) to 30 (Zn)

Angular differential cross-sections: compound or mixture

Rayleigh

• Electronic

• Atomic

$$\left(\frac{d\sigma_{R}}{d\vartheta}\right)_{el,comp} = \sum_{i=1}^{n} w_{i} \left(\frac{d\sigma_{R}}{d\vartheta}\right)_{el,i}$$
$$\left(\frac{d\sigma_{R,FF}}{d\vartheta}\right)_{at,comp} = \sum_{i=1}^{n} w_{i} \left(\frac{d\sigma_{R,FF}}{d\vartheta}\right)_{at,i}$$

Compton

• Electronic

• Atomic

$$\left(\frac{d\sigma_{C}}{d\vartheta}\right)_{el,comp} = \sum_{i=1}^{n} w_{i} \left(\frac{d\sigma_{C}}{d\vartheta}\right)_{el,i}$$

$$\left(\frac{d\sigma_{C,SF}}{d\vartheta}\right)_{at,comp} = \sum_{i=1}^{n} w_i \left(\frac{d\sigma_{C,SF}}{d\vartheta}\right)_{at,i}$$

Computation of FFs and SFs

- Single element
 - From table: logarithmic interpolation of the EPDL97 database (Cullen et al. 1997)
 - Computed (Fernandez 2000): combination of analytical calculations (Veigele et al. 1966), and semi-analytical formulas (Cromer et al. 1969,1974) (Smith et al. 1975)
- Mixture or compound

$$\left\langle F^{2}(X,Z_{i})\right\rangle_{comp} = \frac{\left(\frac{d\sigma_{R,FF}}{d\theta}\right)_{at,comp}}{\left(\frac{d\sigma_{R}}{d\theta}\right)_{el,comp}} = \sum_{i=1}^{n} \alpha_{i}^{at} F^{2}(X,Z_{i})$$

$$\alpha_{i}^{at} = \frac{\frac{W_{i}}{A_{i}}}{\sum_{i=1}^{n} \frac{W_{i}}{A_{i}}}$$

$$\left\langle S(X,Z_{i})\right\rangle_{comp} = \frac{\left(\frac{d\sigma_{C,SF}}{d\theta}\right)_{at,comp}}{\left(\frac{d\sigma_{C}}{d\theta}\right)_{el,comp}} = \sum_{i=1}^{n} \alpha_{i}^{at} S(X,Z_{i})$$

Physical and geometrical model

- Specimen:
 - Homogeneous
 - 1D geometry
- Source:
 - Monochromatic excitation
 - Collimated beam
 - Energy range 1-1000 keV
- First order Rayleigh and Compton scattering (no multiple scattering)
- No polarization effects considered

Physical and geometrical model

d = sample thickness

$$\eta_0 = \cos \theta_0$$
 $\alpha_0 = \frac{\mu(E_0)}{|\eta_0|}$

$$\eta = \cos\theta$$

$$\alpha = \frac{\mu(E')}{|\eta|}$$

Outgoing energy

- Rayleigh scattering $E' = E_0$
- Compton scattering $E' = \frac{E_0}{1 + \frac{E_0}{mc^2}(1 - \cos \vartheta)}$

First order scattering flux

- Reflection
 - Semi-Infinite Target

$$I_{S} = \frac{I_{0}}{|\eta||\eta_{0}|} \frac{1}{\alpha + \alpha_{0}} \left(\frac{d\sigma_{S,at}}{d\vartheta}\right)_{comp}$$

- Finite Target

$$I_{S} = \frac{I_{0}}{|\eta||\eta_{0}|} \frac{1 - \exp\left[-(\alpha + \alpha_{0})d\right]}{\alpha + \alpha_{0}} \left(\frac{d\sigma_{S,at}}{d\vartheta}\right)_{comp}$$

Transmission

- Finite Target

$$I_{S} = \frac{I_{0}}{|\eta_{0}||\eta|} \frac{\exp[-(\alpha_{0} - \alpha)d] - 1}{\alpha - \alpha_{0}} \exp(-\alpha d) \left(\frac{d\sigma_{S,at}}{d\theta}\right)_{comp}$$

with
$$\alpha_0 = \frac{\mu(E_0)}{|\eta_0|}$$
 $\alpha = \frac{\mu(E')}{|\eta|}$

SAP (Scattering Angular distribution Plot)

Every computation consists of four stages

- definition of the required parameters
- computation with automatic saving of the results in the report file sap_out.txt
- graphical visualization of the results
- saving of the plot as encapsulated postscript (eps) file

Definition of the parameters: Main dialog

- substance properties
- source properties
- specimen thickness
- table or semi-analytical FF/SF computation
- kernel normalization (if any)
- scale for the R/C representation

🏟 SAP v2.0	
Substance insert name	ENERGY [KeV] 10.00
Mixture of compounds	Angle of incidence 45.00 [DEG]
Element (atomic number) Element (chemical symbol) Chemical formula	Source Intensity 1.00
Mixture of elements Mixture of compounds	Normalization
- Specimen Thickness	C Type 1 (probability)
Infinite	C Type 2 (rescale)
C Thickness [cm] 0.100	None
FF/SF	Intensity Ratio Scale
From Table	 Autoscale
C Computed	C Fixed 5.00
Compute Plot	Help Exit

Graphical visualization of the results

OR

Example: Rayleigh kernel Water 60 keV

Substance: Water Composition: H2O Energy: 60 keV Normalization: None FF/SF: From EPDL97

Example: Compton kernel Water 60 keV

Substance: Water Composition: H2O Energy: 60 keV Normalization: None FF/SF: From EPDL97

Influence of energy on kernels

Rayleigh kernel

Compton kernel

Substance: Water Composition: H20 Energy: 10 keV, 20 keV, 30 keV Normalization: None FF/SF: From EPDL97

Influence of energy on intensity

Rayleigh Total Intensity

Compton Total Intensity

Influence of sample thickness on Compton intensity

Reference Compton kernel

Composition: Compound (chemical formula) \rightarrow H2O **Energy:** 59.54 keV **Thickness:** 0.05 cm - 0.5 cm + 1 cm - 10 cm **FF/SF:** From EPDL97

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Compton Total Intensity

Influence of incidence angle on intensity

Rayleigh Total Intensity

Substance: Water Composition: H2O Energy: 10 keV Thickness: 0.1 cm Incidence angle: 0° 30° 45° 60° 89° FF/SF: From EPDL97

Compton Total Intensity

Conclusions

- The code SAP computes and plots:
 - angular distribution of first order Rayleigh and Compton intensities for reflection and transmission
 - angular distributions of FFs and SFs
 - angular distributions of electronic and atomic scattering kernels
- Useful tool to determine the optimal position of the detector in a scattering experiment
- Applications on industry, medicine and non-destructive testing (NDT) with scattering techniques

Visit the website http://shape.ing.unibo.it

Jorge E. Fernandez jorge.fernandez@unibo.it

Viviana Scot viviana.scot@unibo.it