

X-ray photon spectroscopy Calculations (lesson 2)

Prof. Jorge E. Fernandez, Laboratorio of Montecuccolino, DIN

X-Ray Fluorescence

Wavelength Dispersive XRF (WDXRF)
Energy Dispersive XRF (EDXRF)

Bragg law (reflection of x-rays)

$$n\lambda = 2a\sin\vartheta$$

where:

a: distance between crystalline planes n: reflection order (n=1 corresponds to the higher order) $2 \ \vartheta$: angle between the incident and the reflected beams

Angular shift (Bragg)

For n=1 we have

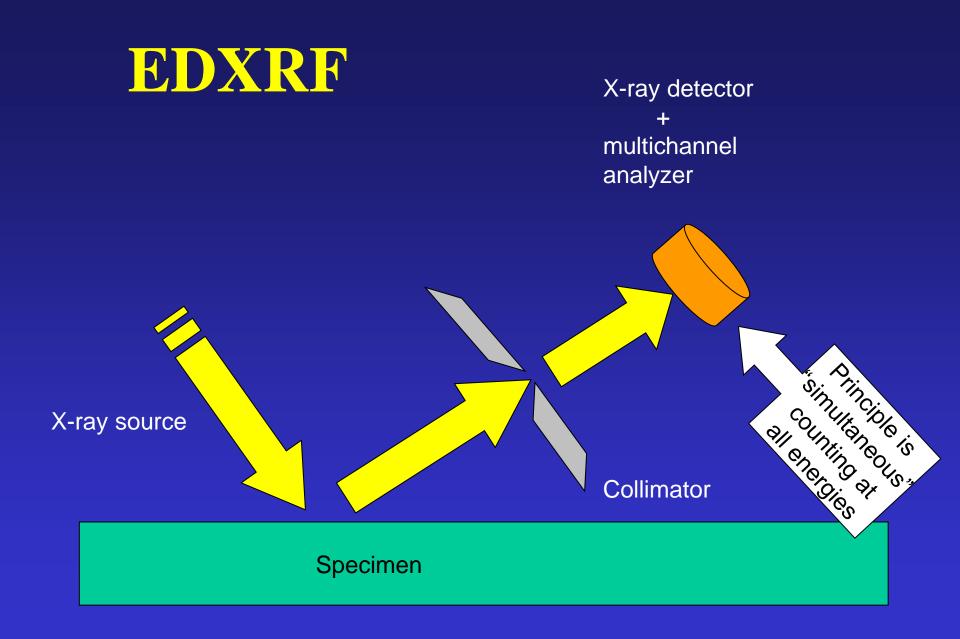
$$\Delta \lambda = 2a \Delta(\sin \vartheta)$$
$$= 2a \cos \vartheta \Delta \vartheta$$

Example:

LiF Crystal (a=0.4028 10⁻⁹ m = 4.028 A)

 $g = 45^{\circ}$

$$\lambda = 2a_{LiF} \sin 45^\circ = 5.6 \text{A}$$


Useful data on crystals

Strate State

Crystal	Reflection Plane	n 2 <i>d</i> Spacing (nm)	5	t Atomic Detectable	Reflection Efficiency
			K Series	L Series	1
Topaz	(303)	0.2712	V(23)	Ce (58)	Average
Lithium Fluoride	(220)	0.2848	V (23)	Ce (58)	High
Lithium Fluoride	(200)	0.4028	K (19)	In (49)	Intense
Sodium Chloride	(200)	0.5639	S (16)	Ru (44)	High
Quartz	$(10\overline{1}1)$	0.6686	P (15)	Zr (40)	High
Quartz	(1010)	0.850	Si (14)	Rb (37)	Average
Penta erythritol	(002)	0.8742	Al (13)	Rb (37)	High
Ethylenediamine Tartrat	e (020)	0.8808	Al (13)	Br (35)	Average
Ammonium Dihydrogen					
Phosphate	(110)	1.065	Mg (12)	As (23)	Low
Gypsum	(020)	1.519	Na (11)	Cu (29)	Average
Mica	(002)	1.98	F (9)	Fe (26)	Low
Potassium Hydrogen Phthalate Lead Stearate	(1011)	2.64 10.0	O (8) B (5)	V (23) Ca (20)	Average Average

Table 4.1 Analysing crystals (Jenkins and de Vries, 1970)*

• Additions to this list have been given by Jenkins (1972).

WDXRF vs EDXRF

	λ	E
Spectrum measurement	Through angle variation (using Bragg law)	"simultaneous" at all the energies
Influence of source/detector instabilities	Is transferred on the single measurement	Is the same for all the spectrum
Misure on a wide range	May need several detectors and/or crystals	always uses the same detector

Equivalence wavelength-energy

For the conversion, the following relation is used:

$$E[keV] = hc/\lambda[A]$$
$$= 12.39/\lambda[A]$$

Then, an x-ray spectrum intensity is converted as follows

$$I_{\lambda}(\lambda)\frac{hc}{E^2} = I_{E}(E)$$

where

$$\int_0^\infty I_\lambda(\lambda) \, d\lambda = \int_0^\infty I_E(E) \, dE$$