

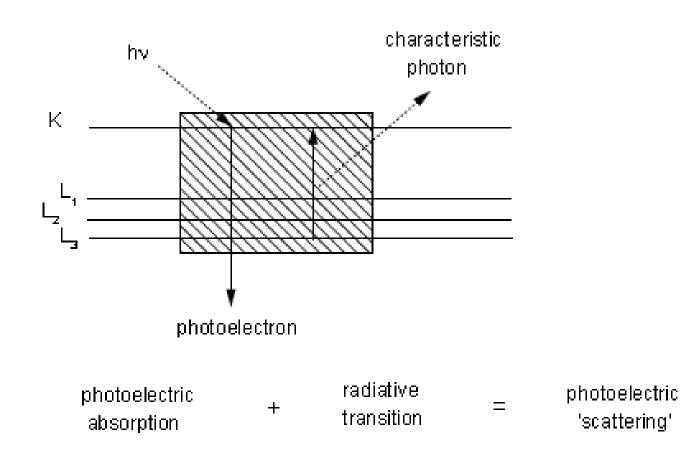
X-ray photon spectroscopy calculations

Prof. Jorge E. Fernandez, Laboratorio of Montecuccolino, DIN

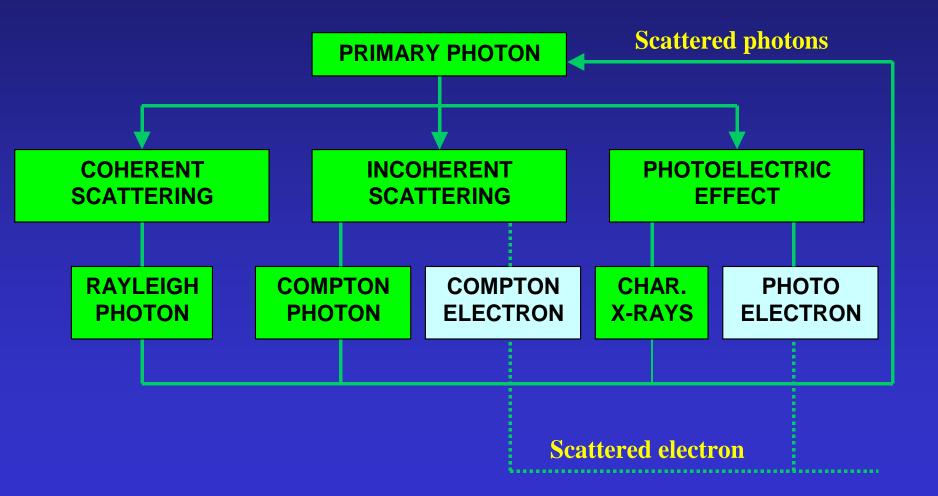
ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

keywords

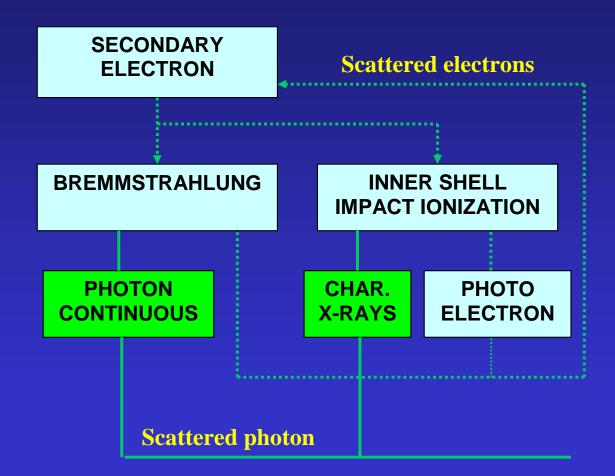
- X-rays -> Photon transport
- Multiple scattering
- Unpolarised & polarised radiation
- X-ray interactions
- X-ray spectrometry
- Monte Carlo & Deterministic codes


X-RAYS

- electromagnetic radiation
- X-rays penetrate deeply into the matter, and interact with the atoms without changing their chemical state
- in a thick medium, give place to a phenomenon known as multiple scattering.


MULTIPLE SCATTERING

- Multiple scattering models describe the influence of the prevailing interactions in the x-ray regime (photoelectric effect, Compton scattering and Rayleigh scattering)
- The photoelectric effect itself is a 'scattering process'

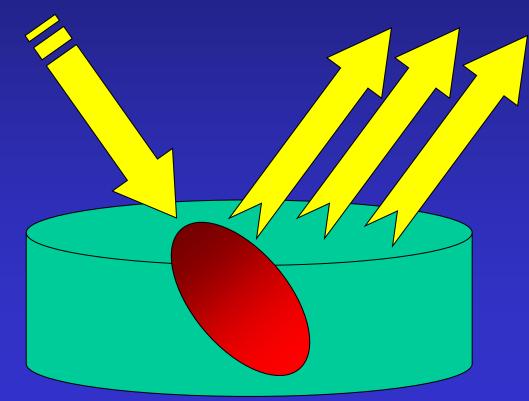

Photoelectric effect as 'scattering'

THE PREVAILING INTERACTIONS IN THE X-RAY REGIME

Electron-photon coupling

X-RAY SPECTROMETRY TECHNIQUES

X-RAY TECHNIQUES (USING A X-RAY SOURCE)

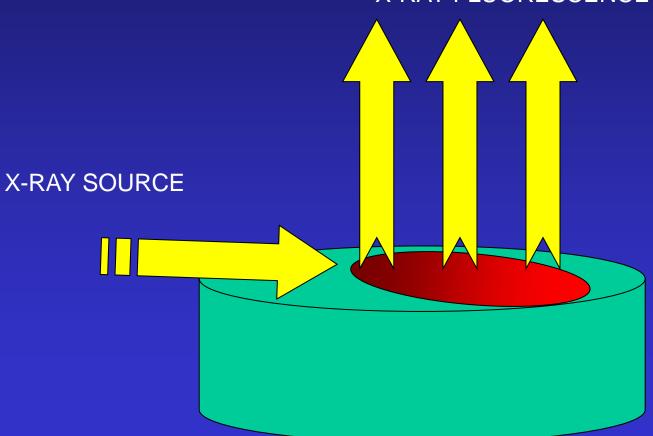

(ATOMIC INFORMATION)

- X-RAY FLUORESCENCE (XRF)
- TOTAL REFLECTION FLUORESCENCE (TXRF)
- X-RAY SCATTERING
- X-RAY RADIOGRAPHY
- PHASE CONTRAST RADIOGRAPHY
- X-RAY TOMOGRAPHY
 - ATTENUATION TOMOGRAPHY
 - XRF TOMOGRAPHY

X-RAY FLUORESCENCE (XRF)

X-RAY FLUORESCENCE

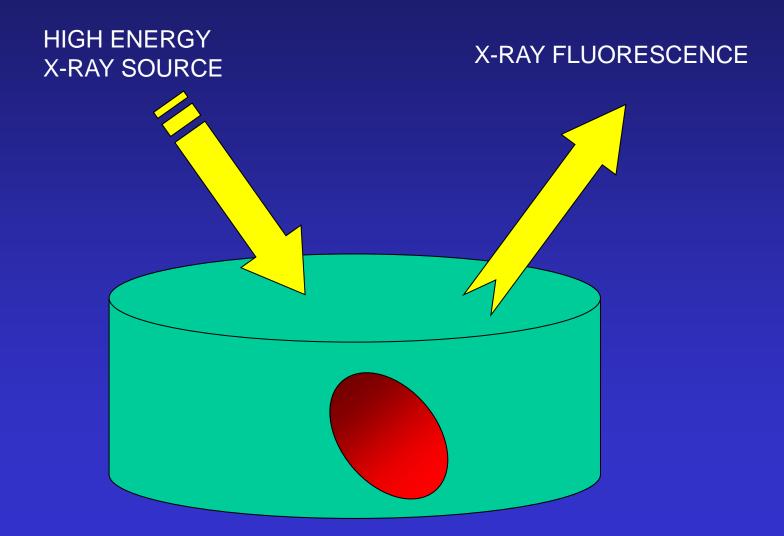
X-RAY SOURCE



X-RAY FLUORESCENCE

SOURCE: INCOHERENT UNPOLARIZED OR POLARIZED **GEOMETRY: REFLECTION INTEREST COLLISION: PHOTOELECTRIC EFFECT** (GIVING CHARACTERISTIC LINES) **PENETRATION: LOW-MEDIUM MEASURE: ELEMENTAL COMPOSITION IN A** VOLUME MAPPING: YES (2-D), 3D WITH CONFOCAL XRF MATERIALS: PAINTINGS, GLASSWORKS, METALS, FRESCOES, ETC. **EQUIPMENT: PORTABLE** DATA HANDLING: LIGHT (SEMI-QUANTITATIVE) **HEAVY (QUANTITATIVE OR 2D)**

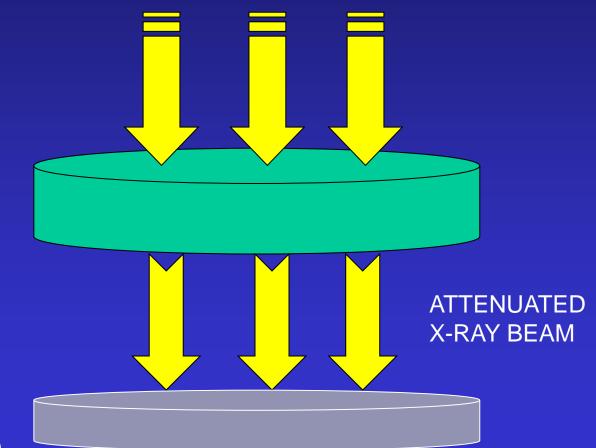
TOTAL REFLECTION X-RAY FLUORESCENCE (TXRF)


X-RAY FLUORESCENCE

TOTAL REFLECTION X-RAY FLUORESCENCE

SOURCE: INCOHERENT UNPOLARIZED OR POLARIZED **GEOMETRY: GRAZING INCIDENCE, REFLECTION INTEREST COLLISION: PHOTOELECTRIC EFFECT** (GIVING CHARACTERISTIC LINES) **PENETRATION: LOW MEASURE:** SURFACE, TRACE ELEMENTS **MAPPING: MORE DIFFICULT MATERIALS: COATINGS EQUIPMENT: LABORATORY (ALIGNEMENT IS DELICATE**) DATA HANDLING: LIGHT

X-RAY SCATTERING

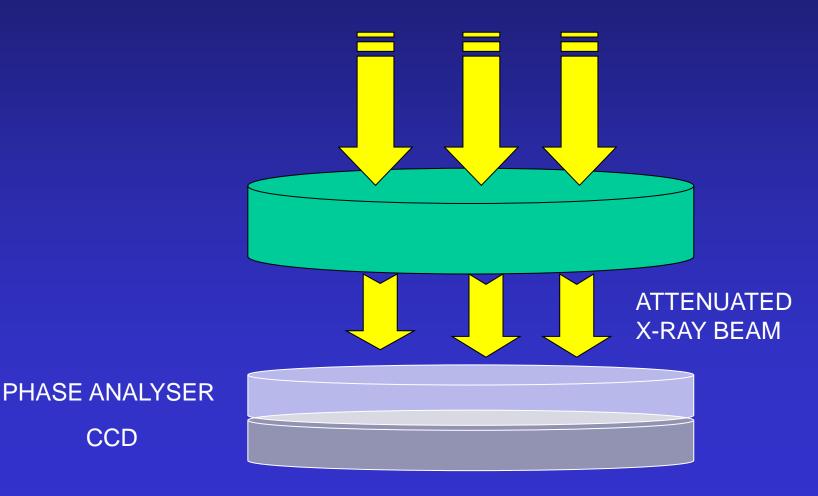


X-RAY SCATTERING

SOURCE: INCOHERENT UNPOLARIZED OR POLARIZED **GEOMETRY: REFLECTION AND TRANSMISSION INTEREST COLLISION: COMPTON SCATTERING** (SOMETIMES USED TOGETHER WITH RAYLEIGH SCATTERING AND COMPTON TAIL) **PENETRATION: MEDIUM-HIGH MEASURE: DENSITY** MAPPING: YES (2-D) MATERIALS: MARBLES, STONES, MURAL SUPPORT OF FRESCOES, ETC. **EQUIPMENT: PORTABLE DATA HANDLING: HEAVY (STATISTICAL METHODS)**

X-RAY RADIOGRAPHY

X-RAY SOURCE


SENSITIVE PLATE OR CCD (DIGITAL)

X-RAY RADIOGRAPHY

SOURCE: INCOHERENT UNPOLARIZED **GEOMETRY: TRANSMISSION INTEREST COLLISION: FULL EFFECT OF** ATTENUATION (NOT A SINGLE COLLISION) **PENETRATION: MEDIUM-HIGH MEASURE: CONTRAST IS ATTENUATION** MAPPING: YES (2-D) **MATERIALS: LIGHT ELEMENTS EQUIPMENT: LABORATORY** DATA HANDLING: LIGHT

PHASE CONTRAST RADIOGRAPHY

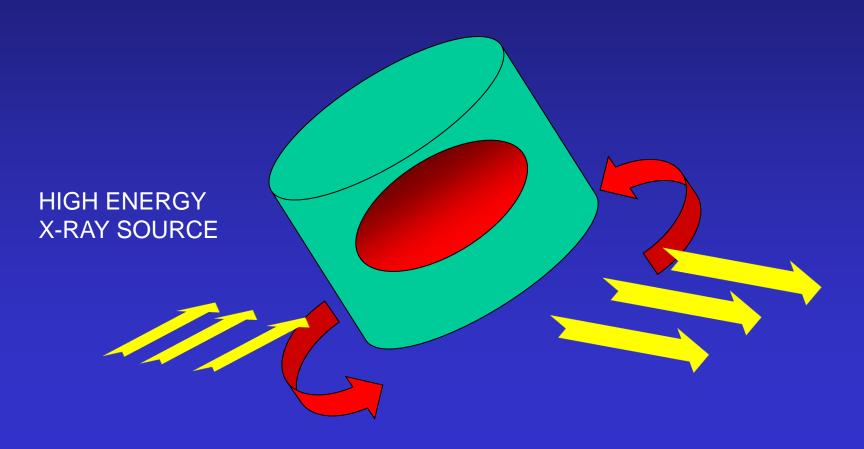
COHERENT X-RAY SOURCE

PHASE CONTRAST RADIOGRAPHY

SOURCE: COHERENT UNPOLARIZED OR POLARISED GEOMETRY: TRANSMISSION INTEREST COLLISION: RAYLEIGH SCATTERING **PENETRATION: MEDIUM-HIGH MEASURE: CONTRAST IS ATTENUATION** MAPPING: YES (3-D EFFECTS) MATERIALS: LIGHT ELEMENTS **EQUIPMENT: LABORATORY** DATA HANDLING: HEAVY

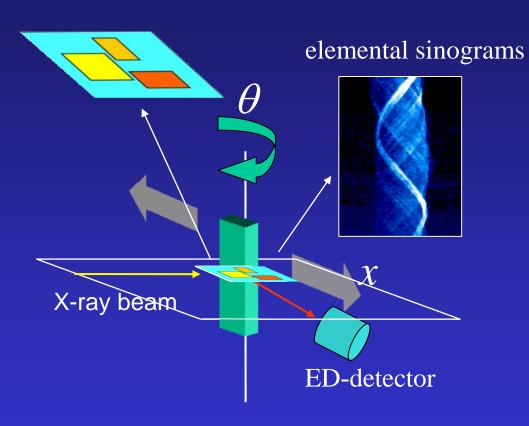
X-RAY ATTENUATION TOMOGRAPHY

TRANSMITTED BEAM


HIGH ENERGY X-RAY SOURCE

X-RAY ATTENUATION TOMOGRAPHY

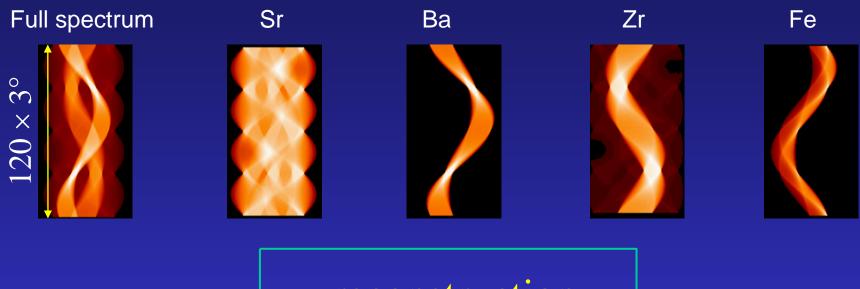
SOURCE: INCOHERENT UNPOLARIZED OR POLARIZED **GEOMETRY: TRANSMISSION INTEREST COLLISION: FULL ATTENUATION EFFECT (NOT A SINGLE COLLISION) PENETRATION: MEDIUM-HIGH MEASURE: VOLUME MAPPING: YES (3-D ATTENUATION COEFFICIENT) MATERIALS: SMALL SIZE OBJECTS EQUIPMENT: LABORATORY** DATA HANDLING: HEAVY (RECONSTRUCTION **METHODS**)


X-RAY FLUORESCENCE TOMOGRAPHY

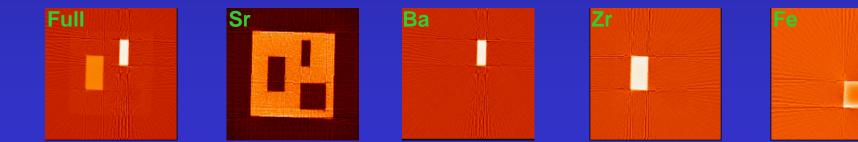
X-RAY FLUORESCENCE

3D – MCSHAPE: XRF Tomography

•


- Total dimension: 0.1 x 0.1 x 0.01 cm
- Composition: Region A: C + 0.1%Sr, $\rho = 1.0 \text{ g/cm}^3$ Other elements: Region B: SiO₂ + 1%Fe, $\rho = 2.23 \text{ g/cm}^3$ Region C: SiO₂ + 1%Ba, $\rho = 2.23 \text{ g/cm}^3$ Region D: SiO₂ + 1%Zr, $\rho = 2.23 \text{ g/cm}^3$
 - Source: energy: 59.54 keV type: point source unpolarized

igodol


 Detector: type: disk with 30 mm² of total area no collimator

V. Scot, J.E. Fernandez, L. Vincze, K. Janssens, NIM-B 263 (2007) 204

3D – MCSHAPE: XRF Tomography

reconstruction

V. Scot, J.E. Fernandez, L. Vincze, K. Janssens, NIM-B 263 (2007) 204

X-RAY FLUORESCENCE TOMOGRAPHY

SOURCE: INCOHERENT UNPOLARIZED OR POLARIZED **GEOMETRY: REFLECTION INTEREST COLLISION: PHOTOELECTRIC** EFFECT **PENETRATION: MEDIUM-HIGH MEASURE: VOLUME** MAPPING: YES (3-D SINGLE ELEMENT) MATERIALS: SMALL SIZE OBJECTS **EQUIPMENT: LABORATORY** DATA HANDLING: HEAVY (RECONSTRUCTION METHODS)

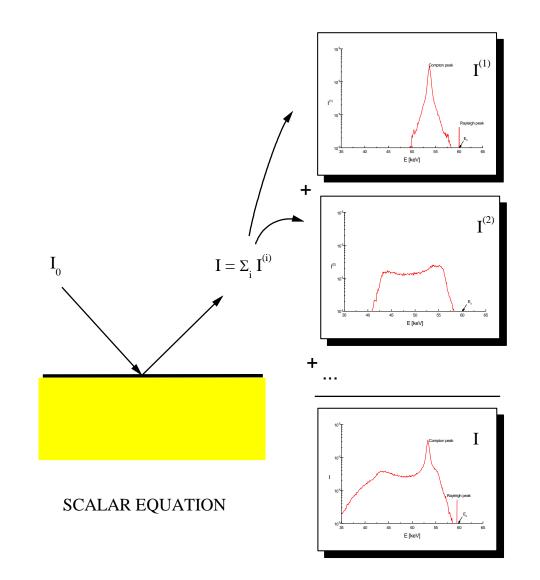
OTHER X-RAY TECHNIQUES (USING A X-RAY SOURCE)

(STRUCTURE INFORMATION)X-RAY DIFFRACTION (XRD)

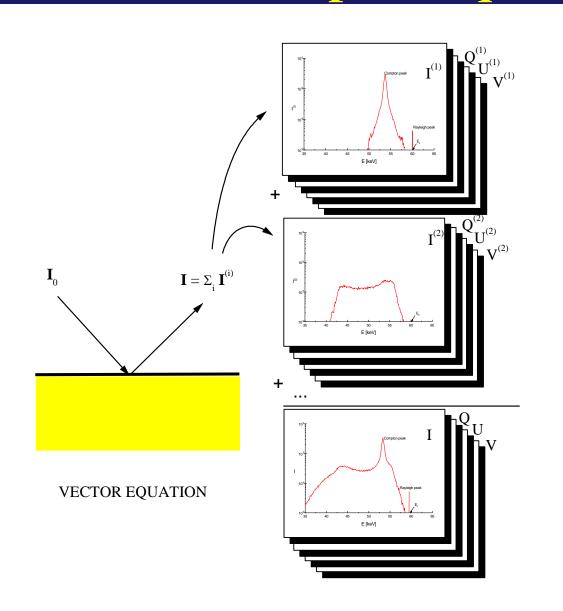
(MOLECULAR INFORMATION)

- RAMAN SCATTERING
- EXAFS
- ANOMALOUS SCATTERING ABSORPTION
- RAYLEIGH & COMPTON SCATTERING TOMOGRAPHY

THEORETICAL MODELS


MODELS TO DESCRIBE PHOTON TRANSPORT

- Different degrees of approximation to describe the diffusion of photons:
- scalar model: photons never modify an average polarization state
- vector model: transport of photons starting with arbitrary polarization state


Both models follow a multiple scattering scheme

a	Photoelectric effect	Rayleigh scattering	Compton scattering
one collision	(P)	(R)	(C)
	characteristic lines	Rayleigh peak	Compton peak
	(discrete)	(discrete)	(continuous)
two collisions			
b			
	Photoelectric effect	Rayleigh scattering	Compton scattering
a			
	(P,P)	(P,R)	(P,C)
Photoelectric effect	XRF secondary	XRF enhancement due to	XRF enhancement due to
	enhancement	scattering	scattering
	(discrete on XRF line)	(discrete on XRF line)	(continuous on XRF line)
	(R,P)	(R , R)	(R , C)
Rayleigh scattering	XRF enhancement due to	second order scattering	second order scattering
	scattering		(continuous on Compton
	(discrete on XRF line)	(discrete on Rayleigh peak)	peak)
	(C,P)	(C,R)	(C,C)
Compton scattering	XRF enhancement due to	second order scattering	second order scattering
	scattering	(continuous on Compton	(continuous on Compton
	(discrete on XRF line)	peak)	peak)

Scalar transport equation

Vector transport equation

SOLUTION TECHNIQUES

The transport equation is solved using an order-of-collisions scheme

comparable results for deterministic and Monte Carlo solutions

Deterministic vs. Monte Carlo

Solution	Deterministic	Monte Carlo (statistical)
Scope of the solution	Global	Local
Accuracy		
Capability to describe the geometry		
Number of collisions		
Developed codes	SHAPE	MCSHAPE

Bibliography

- Fano U, Spencer LV and Berger MJ (1959) Penetration and diffusion of X-rays. In *Encyclopedia of Physics*, Vol 38/2, p. 660.
 Springer Verlag, Berlin.
- Fernández JE and Molinari VG (1991) X-Ray Photon spectroscopy calculations. In: *Advances in Nuclear Science and Technology*, Vol. 22, J Lewins, M Becker eds., Plenum Press, New York, pp. 45-104 (the copy distributed)

Bibliography (polarization effects)

- Pomraning GC (1973) The equations of radiation hydrodynamics, Pergamon Press, Oxford.
- Fernández JE, Hubbell JH, Hanson AL and Spencer LV (1993) Polarization effects on multiple scattering gamma transport. *Rad. Phys. Chem.* 41, 579-630.
- Fernández JE (1999) Polarization effects in multiple scattering photon calculations using the Boltzmann vector equation. *Rad. Phys. Chem.* 56, 27-59.